Examinando por Materia "Alginato"
Mostrando 1 - 7 de 7
Resultados por página
Opciones de ordenación
Publicación Acceso abierto Biomaterial basado en alginato y gelatina para el desarrollo de cultivos tridimensionales(Universidad EIA, 2023) Ríos Vergara, Julieta; Echeverri Cuartas, Claudia; Toro, LenkaRESUMEN: los biomateriales en cultivo celular permiten imitar el comportamiento de la matriz extracelular (MEC) fielmente brindando soporte y nutrientes. La gelatina y el alginato de sodio son biomateriales muy utilizados en cultivo por su biocompatibilidad y baja citotoxicidad. Por otro lado, los esferoides celulares facilitan la formación de interacciones célula-célula en las tres dimensiones, como se encuentra en la fisiología de los organismos. En búsqueda de un cultivo celular que brinde la oportunidad de imitar ambos comportamientos, se planteó la encapsulación de esferoides en matrices Alg-Gel en tres proporciones distintas (50:50, 70:30 y 80:20) para encapsular esferoides de NIH3T3 (línea celular de fibroblastos de ratón) cultivados usando el método de gota colgante, a través del entrecruzamiento iónico con CaCl2 100 mM. Se caracterizaron las matrices de Alg-Gel (espectrometría de transformada de Fourier -FTIR-, evaluación de morfología, hinchamiento y degradación por gravimetría, evaluación de esterilidad y evaluación de citotoxicidad) y el cultivo de esferoides en sus pre y post encapsulación (microscopia óptica, microscopia de fluorescencia y ensayo MTT) con el fin de observar el comportamiento de estos y los posibles factores asociados a la matriz que influyan sobre su crecimiento y desarrollo. Al final se demostró que la matriz Alg-Gel 80:20 presentaba el mayor porcentaje de hinchamiento (34.91 %) demostrando una posible mayor presencia de poros; además, se evidenció que el medio de cultivo celular afecta la integridad de las matrices, dificultando su manipulación a largo plazo. Se determinó que el tamaño promedio de los esferoides antes de ser encapsulados era de 181.85 ± 9.70 μm y, además, se observó que el ensayo de MTT para la evaluación de los esferoides tuvo absorbancias bajas, aun cuando este se trataba de un esferoide viable, ya que se evidenció la formación de cristales de formazán y se observó la morfología de este por microscopia electrónica de barrido -SEM. Los esferoides encapsulados en las matriz Alg-Gel mostraron tener menor tamaño que el control (control = 211.55 ± 19.68 μm; 50:50 = 193.77 ± 18.67 μm; 70:30 = 191.20 ± 16.63;y 80:20 = 183.54 ± 19.14 μm), y la disminución de su tamaño se relacionó con la cantidad de Alg, lo cual brindaría la oportunidad de un cultivar esferoides con control de tamaño. Todas las matrices de Alg-Gel demostraron ser viables según la norma ISO 10993 tanto para los ensayos de citotoxicidad directa e indirecta a esferoides, resaltando el hecho que en ambos casos la matriz Alg-Gel 80:20 representaba una alta viabilidad, con porcentajes equivalente a 113.58 % (indirecta) y 99.36 % (directa). Estos resultados sugieren que la matriz Alg-Gel 80:20 puede tener un uso prometedor para la encapsulación de esferoides; sin embargo, se debe indagar más a fondo con respecto a los métodos de evaluación de esferoides para corroborar el efecto positivo de Alg. Además, se recomienda la implementación de métodos que mejoren las características en presencia del medio de cultivo de las matrices, en general.Publicación Acceso abierto Diseño y construcción de un dispositivo (prototipo) intraoral para la liberación controlada de medicamentos(Universidad EIA, 2005) Carvajal Tabares, Veronica; Piedrahita Calderón, Ana Maria; Moreno Moreno, FernandoEste trabajo de grado tiene como prioridad diseñar y construir un dispositivo intraoral para la liberación controlada de medicamentos, a fin de aportar soluciones prácticas a diferentes necesidades que se presentan, tanto para los pacientes, como para el personal especializado en su práctica profesional, así como también impulsar las investigaciones en el campo denominado Drug Delivery, tan escasas en nuestro medio. En la presente investigación se realizó un estudio, en el cual se evaluó la capacidad del alginato como biomaterial, capaz de liberar sustancias hidrosolubles a una rata determinada, comparando diferentes tipos de alginato y su comportamiento en un periodo de tiempo establecido. De acuerdo a esta evaluación, se desarrolló un dispositivo intraoral al que se le acopló el alginato en forma de pastilla como agente liberador, realizando un diseño y fabricación óptima, económica y ergonómica, para suplir las inconformidades existentes en el tratamiento de algunas patologías de la cavidad oral.Publicación Acceso abierto Esferas basadas en alginato, gelatina y polivinil alcohol con potencial aplicación en el cultivo de condrocitos(Universidad EIA, 2021) Lenis Arias, Karen Gisella; Echeverri Cuartas, Claudia Elena; Montoya Góez, Yesid de JesúsRESUMEN: La ingeniería de tejido cartilaginoso ha tomado relevancia a través del tiempo, debido a que las enfermedades degenerativas como la artrosis afectan este tejido y están en constante aumento a nivel mundial, lo cual pone en peligro el bienestar de la población. Lo anterior ha motivado a muchos investigadores a buscar soluciones ante esta problemática, por medio del desarrollo de andamios hechos de materiales poliméricos con geometrías esféricas. Sin embargo, aunque estas mezclas de polímeros han resultado viables en el cultivo de condrocitos, aún se encuentra en estudio una composición de biomateriales que sea capaz de soportar las cargas mecánicas del cartílago y ayuden a la regeneración del mismo. Considerando la importancia de esta aplicación, en este trabajo se fabricaron microesferas con diferentes proporciones de polímeros naturales, como alginato (Alg) y gelatina (Gel), que fueron combinados con el polímero sintético, polivinil alcohol (PVA). La elección de estos materiales se realizó debido a las buenas propiedades mecánicas y biológicas para aplicaciones relacionadas con la ingeniería de tejidos; en particular, las propiedades mecánicas se evaluaron mediante un ensayo que permite identificar la resistencia a compresión, siendo uno de los esfuerzos que realiza el cartílago en su funcionamiento cotidiano y al cual está expuesto constantemente el condrocito. Así mismo, con el fin de comparar las esferas experimentales con otros andamios posibles se modelan por medio de CAD y se evalúan mediante un software de análisis de elementos finitos otras geometrías usadas en la ingeniería de tejidos como la cúbica, la cilíndrica y la prismática rectangular, las cuales se usaron para establecer la mejor geometría y método de fabricación mediante un ensayo de esfuerzo a compresión simulado, teniendo en cuenta las propiedades mecánicas del material. Finalmente, se hizo un estudio de mecánica de contacto para establecer el esfuerzo máximo de las esferas fabricadas en el laboratorio, los cuales una vez fueron comparados con los esfuerzos de las simulaciones, esta comparación dio como resultado que las geometría más viables mecánicamente son la prismática rectangular y la esférica, ya que poseen un esfuerzo máximo de compresión más bajo respecto a las otras, sin embargo, no solo se debe tener en cuenta dichas propiedades mecánicas, puesto que se debe garantizar una relación entre la matriz y el condrocito para lograr así una mimetización en el tejido cartilaginoso, es por esto que siendo el condrocito una celular de morfología esférica se plantea que el mejor andamio son las esferas experimentales más específicamente las del tratamiento N° 8 las cuales se fabricaron con una proporción de 10 % de Gel sobre la mezcla de 80 % Alg y 10 % PVA.Publicación Acceso abierto Esferas de alginato de sodio y alcohol polivinílico con potenciales aplicaciones en ingeniería de tejidos(Universidad EIA, 2011) Arias Barreneche, Alejandra; Vanegas Patiño, Adriana; Echeverri Cuartas, Claudia ElenaRESUMEN: En este proyecto se buscó obtener un material con potenciales aplicaciones en ingeniería de tejidos, a partir de la mezcla de dos polímeros biocompatibles, Alginato de Sodio (SA) y Alcohol Polivinílico (PVA) usados para este tipo de aplicaciones. En estudios realizados previamente en el Grupo de Investigación de Ingeniería Biomédica EIA-CES (GIBEC), se habían estudiado el alginato de sodio de forma esférica como material de encapsulación de condrocitos y el alcohol polivinílico modificándolo con diversos agentes porogénicos para hacerlo apto para matriz de cultivo. La mezcla de polímeros es un método usado para mejorar las propiedades de ambos materiales como una nueva propuesta para futuros estudios en la línea Biotecnológica en Salud y Biomateriales. Se construyeron esferas de PVASA a 4 diferentes concentraciones y se sometieron a 3 y 6 ciclos de congelación/descongelación (C/D) para entrecruzar el material y observar cual estructura tridimensional puede ser una mejor opción para aplicaciones en ingeniería de tejidos donde se usa como estrategia para, por ejemplo, hacer el papel de matriz en implantación autóloga de condrocitos en reparación de lesiones, para la liberación de medicamentos, entre muchas otras aplicaciones.Publicación Acceso abierto Estabilidad de nanopartículas de quitosano y alginato para aplicaciones biomédicas(Universidad EIA, 2021) Solarte Silva, Yurani Katherine; Echeverri Cuartas, Claudia ElenaRESUMEN: En la investigación biomédica, las nanopartículas han sido exploradas ampliamente en diversos campos, sin embargo, una de sus aplicaciones más prometedoras es la administración dirigida de fármacos anticáncer. Por esto, es importante resolver los retos actualmente existentes en el diseño de sistemas nanoparticulados para este tipo de aplicación, tales como: tener un tamaño que permita la circulación e internalización celular, presentar una forma que favorezca el cruce de varias barreras biológicas y poseer una carga superficial que mejore el tiempo de circulación, la adhesión e ingreso a las membranas celulares. En cuanto a biomateriales para este tipo de aplicaciones biomédicas, se destacan las nanopartículas poliméricas, debido a su excelente biocompatibilidad y biodegradabilidad, principalmente, aquellas obtenidas a partir de polímeros naturales como quitosano y alginato. Por lo anterior, el objetivo de este trabajo de grado era obtener nanopartículas de quitosano y alginato con un tamaño inferior a 200 nm y estables en condiciones fisiológicas simuladas (con un pH de 7,4, una temperatura de 37 °C y una fuerza iónica de163 mM). Para la ejecución de este proyecto, se prepararon nanopartículas a partir de entrecruzamiento iónico, se evaluó el efecto de la concentración de quitosano y alginato sobre la formación de las nanopartículas, y se evaluó el efecto de la relación molar sobre el tamaño de partícula y la carga superficial, mediante caracterizaciones por dispersión de luz (DLS) y potencial ζ. Por último, se determinó el efecto de la temperatura y el pH fisiológico sobre la estabilidad coloidal de las nanopartículas obtenidas. Los resultados mostraron la eficacia del entrecruzamiento iónico para la obtención de nanopartículas de quitosano-alginato con un tamaño de 180,1 nmy posible aplicación biomédica, al emplear concentraciones de quitosano y alginato de 0,1 mg/mL y 0,3 mg/mL, respectivamente, y una relación molar alginato:glucosamina de 0,00048:1. Sin embargo, las nanopartículas obtenidas a partir de estos dos polímeros, presentaron problemas de agregación al ser evaluadas en condiciones fisiológicas simuladas, aunque con los pesos moleculares evaluados no se identificaron procesos de precipitación de las nanopartículas, lo cual podría explorarse a futuro para la administración de agentes quimioterapéuticos por vía intravenosa.Publicación Acceso abierto Fabricación de matrices de Quitosano y Alginato para su aplicación en ingeniería de tejidos(Universidad EIA, 2016) Salazar Puerta, Ana Isabel; Londoño López, Martha ElenaActualmente se ha trabajado en la ingeniería de tejidos con andamios (Scaffolds) biodegradables, que tienen la capacidad de imitar fielmente a la matriz extracelular (MEC) y así crear un ambiente propicio para la adhesión y proliferación celular, estimulando así el crecimiento de tejido in vitro (Yildirimer, Thanh, & Seifalian, 2012). En este trabajo se propone la fabricación de matrices porosas a partir de quitosano y alginato, dos polímeros de origen natural, para la posterior evaluación de la adhesión y proliferación de Fibrolastos en ellas. Las matrices se fabricaron con una concentración de quitosano al 1,5% y al 1%, manteniendo la concentración del alginato al 1%; se utilizaron además 2 proporciones: 75/25 y 25/75 de quitosano-alginato. Como agente porogénico se utilizó bicarbonato de amonio y de sodio entrecruzadas físicamente por medio de liofilización. Se realizaron 5 tratamientos con la combinación de los parámetros anteriores, otros 5 tratamientos a las mismas concentraciones y proporciones pero sin agente porogénico y 3 controles de 100% quitosano a una concentración del 1,5%, 1% y alginato al 1%. Se realizaron técnicas de caracterización a las matrices como: pruebas de hinchamiento, Microscopia Electrónica de Barrido (SEM) para determinar las características microestructurales y porosidad, Espectrometría Infrarroja por Transformada de Fourier (FTIR) para definir los grupos funcionales, Análisis de termogravimetría (TGA) y por último se realizó el cultivo de células de ovario de hámster chino (CHO) en las matrices y se caracterizó por medio de SEM nuevamente para evaluar su adhesión y proliferación. Finalmente se observó que las matrices que tenían una mayor proporción de quitosano presentaban un porcentaje de hinchamiento mayor, por lo cual su porosidad incrementó, tenía buena interconectividad y tamaño de poro adecuado. Además se pudo evidenciar la adhesión de células CHO en 4 de los 5 tratamientos planteados, presentando mejores resultados en las matrices con un alto contenido de quitosano.Publicación Acceso abierto Matriz para células productoras de insulina(Universidad EIA, 2020) Muñoz Cuartas, Susana; Londoño López, Martha ElenaRESUMEN: La diabetes es una de las enfermedades más investigadas a nivel mundial dada su alta prevalencia, morbimortalidad y costos asociados. A pesar de los importantes avances científicos sobre su tratamiento, las alternativas disponibles para su manejo siguen presentando barreras que por diversos motivos impiden lograr en todos los pacientes la efectividad esperada. Además, no han podido dar solución definitiva a la resistencia a la insulina o la disminución progresiva de las células β. En los últimos años, el uso de biomateriales para la síntesis de matrices que cumplan con el objetivo de brindar soporte a las células β (productoras de insulina) ha sido planteado como una posible solución. Este trabajo de grado pretende aportar información, con el objetivo que en un futuro las matrices puedan ser implantadas en humanos y cumplir la función de un “páncreas artificial”. Las matrices se fabricaron de alginato-gelatina, con una concentración de 3% y 3.5% de alginato y 10% de gelatina aireada y sin airear; se utilizaron además proporciones de 70/30, 30/70 y 50/50 de gelatina-alginato. No se utilizó agente porogénico, al aprovechar las interacciones covalentes que se realizan entre la gelatina y alginato. Se efectuaron 6 tratamientos con la combinación de los parámetros anteriores y con la distinción de adicionar gelatina aireada, mientras que, como controles, se realizaron tres matrices con gelatina sin airear, alginato en 3% en las proporciones 70/30, 30/70 y 50/50. Se ejecutaron técnicas de caracterización de las matrices como Microscopia Electrónica de Barrido (SEM) para determinar propiedades morfológicas como la porosidad y microestructura, Espectrometría Infrarroja por Transformada de Fourier (FTIR) para definir las interacciones covalentes entre los biomateriales escogidos, y por último, una técnica gravimétrica para establecer la degradación en el tiempo de la matriz. En efecto se espera que las matrices fabricadas puedan ser implementadas en aplicaciones relacionadas con células productoras de insulina, de acuerdo con las pruebas de caracterización implementadas en este trabajo y con posteriores en un futuro.