• Español
  • English
  • Iniciar sesión
    o
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioREPOSITORIO INSTITUCIONAL
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Examinar por materia

Examinando por Materia "SVR"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónSólo datos
    Análisis de características tiempo-frecuencia para la predicción de series temporales de Material Particulado usando Regresión por Vectores de Soporte y Optimización por Enjambre de Partículas
    (Fondo Editorial EIA - Universidad EIA, 2020-06-21) Sepulveda Suescun, Juan Pablo; Alzate Zuluaga, Norbey Yovany; Murillo Escobar, Juan Pablo; Orrego Metaute, Diana Alexandra; Correa Ochoa, Mauricio Andres
    La contaminación atmosférica por Material Particulado (PM) es un problema claramente reconocido a nivel mundial como uno de los factores de riesgo más importantes para la salud humana, en los últimos años han surgido diferentes modelos basados en inteligencia artificial para predecir la concentración de PM, con el fin de generar sistemas de alerta temprana que eviten la exposición de las personas. En este trabajo, se analizó un esquema de caracterización en el dominio tiempo-frecuencia usando la transformada Wavelet para la predicción de series temporales de PM10 y PM2.5 usando un algoritmo de Regresión por Vectores de Soporte optimizado por Enjambre de Partículas (SVR-PSO), además, se evaluó el efecto de la imputación de datos sobre las estimaciones. Los resultados obtenidos mostraron que, empleando características temporales, más las características tiempo-frecuencia propuestas, se obtiene el mejor desempeño de la SVR-PSO, además se encontró que el uso de la imputación de datos no afecta el desempeño de la SVR-PSO. El sistema propuesto en este trabajo permite disminuir el error de las estimaciones de concentración de PM10 y PM2.5 haciendo uso de características tiempo-frecuencia y es capaz de operar de forma robusta contra datos perdidos, aumentando su viabilidad de ser implementado en escenarios reales.
Universidad EIA Biblioteca CROAI

Sede Las Palmas:

Calle 23 AA Sur Nro. 5-200, Kilómetro 2+200 Variante al Aeropuerto José María Córdova, Envigado-Antioquia.
Código Postal: 055428 Tel: (604) 354 90 90
Tel-2: 3187754729 Fax: (574) 386 11 60

Cómo llegar
Sistema DSPACE 7 - Metabiblioteca | logo