Publicación:
Detección de posibles puntos de autogeneración solar a partir de los datos de consumo eléctrico en Colombia

dc.contributor.advisorHoyos Velásquez, Santiago Horacio
dc.contributor.authorPatiño Pérez, Héctor Alejandro
dc.contributor.educationalvalidatorHoyos Velásquez, Santiago Horacio
dc.date.accessioned2024-11-29T15:39:50Z
dc.date.available2024-11-29T15:39:50Z
dc.date.issued2024
dc.description76 páginas
dc.description.abstractRESUMENLos países se encuentran dentro de un proceso de transición energética por medio del cual se desarrolla la electrificación de la economía y se intensifica el uso de las energías renovables a partir de fuentes convencionales y no convencionales, contribuyendo a la reducción de las emisiones de gases efecto invernadero y, por lo tanto, realizando un aporte a la mitigación del cambio climático. En particular, la utilización de energía solar fotovoltaica para la autogeneración de los hogares y las empresas se ha visto motivada por la disminución de los precios de esta tecnología, el aumento de su eficiencia técnica y la disponibilidad de incentivos tributarios generados por ley; lo que se refleja en el cierre financiero de los proyectos solares a pequeña y gran escala, en zonas urbanas, rurales o apartadas a nivel nacional e internacional. Los mercados de energía eléctrica requieren de la estimación correcta de la demanda y la generación de energía para la formación de los precios de corto y largo plazo. En este sentido, conocer la cantidad de energía proveniente de la autogeneración fotovoltaica y su impacto en la demanda es requerido para la planificación de la expansión y para la operación del sistema eléctrico de potencia, además de soportar la toma de decisiones de inversionistas en el sector. El consumo de energía de los hogares y las empresas puede ser caracterizado por su curva de carga, la cual presentaría cambios frente a su patrón de comportamiento histórico como consecuencia de la autogeneración para el autoconsumo, es por esto que, en esta investigación se presenta una metodología basada en técnicas de detección de anomalías para la caracterización de cambios atípicos en el comportamiento de la serie de tiempo del consumo de energía, con el propósito de identificar sistemas solares fotovoltaicos de autogeneración en grandes usuarios de energía en Colombia. La metodología desarrollada se basa en cuatro enfoques: uso de algoritmos de búsqueda exhaustiva, uso de detección de anomalías en series de tiempo mediante la biblioteca Prophet de Facebook, uso de algoritmos para detección de cambios de nivel mediante la biblioteca ADTK – ARUNDO y uso de modelos de aprendizaje profundo para el aprendizaje y detección de cambios en el comportamiento de los datos. Esta investigación se realiza en el marco de la alianza energética 2030, la cual está conformada por 11 organizaciones con el fin de realizar el desarrollo de 11 proyectos de I+D+i financiados por Colciencias. La investigación está desarrollada como parte del proyecto 1 con los datos de consumo de energía eléctrica de los usuarios de Colombia, compartidos por la empresa XM Compañía de Expertos en Mercados S.A. E.S.P. Los resultados encontrados con los dos primeros enfoques utilizados no fueron satisfactorios debido a la gran cantidad de anomalías identificadas y que no representaban el comportamiento esperado para la instalación de un sistema de autogeneración fotovoltaico; sin embargo, los resultados obtenidos bajo el proceso de validación propuesto en los dos últimos enfoques permiten afirmar la presencia de sistemas solares fotovoltaicos instalados a partir de los datos analizados.spa
dc.description.degreelevelMaestría
dc.description.degreenameOtro
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/6828
dc.language.isospa
dc.publisherUniversidad EIA
dc.publisher.facultyEscuela de Ingeniería y Ciencias Básicas
dc.publisher.placeEnvigado (Antioquia, Colombia)
dc.publisher.programOtro
dc.rightsDerechos Reservados - Universidad EIA, 2024
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.subject.proposalAutogeneraciónspa
dc.subject.proposalSolarspa
dc.subject.proposalDatosspa
dc.subject.proposalConsumospa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalIAspa
dc.subject.proposalModelospa
dc.subject.proposalPronósticospa
dc.subject.proposalAutoencoderspa
dc.subject.proposalColombiaspa
dc.titleDetección de posibles puntos de autogeneración solar a partir de los datos de consumo eléctrico en Colombiaspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PatiñoHector_2024_DeteccionPosiblesPuntos.pdf
Tamaño:
978.73 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Bloque de licencias
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
2.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: