Publicación:
Propiedades electrónicas de un anillo cuántico elíptico con sección transversal rectangular

dc.contributor.authorVinasco Suarez, Juan Alejandrospa
dc.contributor.authorRadu, Adrianspa
dc.contributor.authorDuque Echeverri, Carlos Albertospa
dc.date.accessioned2019-01-20 00:00:00
dc.date.accessioned2022-06-17T20:20:01Z
dc.date.available2019-01-20 00:00:00
dc.date.available2022-06-17T20:20:01Z
dc.date.issued2019-01-20
dc.description.abstractLos estados electrónicos de un anillo cuántico elíptico de GaAs embebido en una matriz de AlxGa1-xAs son investigados mediante la aproximación de masa efectiva. El anillo cuántico es construido con una sección transversal rectangular (dirección radial). La ecuación de Schrödinger es resuelta mediante el método de elementos finitos. En dirección angular se modula la amplitud de la altura, lo que permite la generación de puntos cuánticos a lo largo del anillo. Se reportan las energías del electrón como función de las dimensiones del anillo, tanto las longitudes de las elipses en el plano xy como su altura (eje z).spa
dc.description.abstractLos estados electrónicos de un anillo cuántico elíptico de GaAs embebido en una matriz de AlxGa1-xAs son investigados mediante la aproximación de masa efectiva. El anillo cuántico es construido con una sección transversal rectangular (dirección radial). La ecuación de Schrödinger es resuelta mediante el método de elementos finitos. En dirección angular se modula la amplitud de la altura, lo que permite la generación de puntos cuánticos a lo largo del anillo. Se reportan las energías del electrón como función de las dimensiones del anillo, tanto las longitudes de las elipses en el plano xy como su altura (eje z).eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v16i31.1255
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5054
dc.identifier.urlhttps://doi.org/10.24050/reia.v16i31.1255
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1255/1221
dc.relation.citationeditionNúm. 31 , Año 2019spa
dc.relation.citationendpage87
dc.relation.citationissue31spa
dc.relation.citationstartpage77
dc.relation.citationvolume16spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAharonov, Y.; Bohm, D. (1959). Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev., 115(3), pp. 485–491.spa
dc.relation.referencesBaker, C.; Lo, T.; Tribe, W. R.; Cole, B. E.; Hogbin, M. R.; Kemp, M. C. (2007). Detection of Concealed Explosives at a Distance Using Terahertz Technology. Proceedings of the IEEE, 95(8), pp. 1559–1565.spa
dc.relation.referencesBejan, D.; Stan, C.; Niculescu, E. C. (2018). Effects of electric field and light polarization on the electromagnetically induced transparency in an impurity doped quantum ring. Optical Materials, 75, pp. 827–840.spa
dc.relation.referencesBejan, D.; Stan, C.; Niculescu, E. C. (2018). Optical properties of an elliptic quantum ring: Eccentricity and electric field effects. Optical Materials, 78, pp. 207–219.spa
dc.relation.referencesBoonpeng, P.; Kiravittaya, S.; Thainoi, S.; Panyakeow, S.; Ratanathammaphan, S. (2013). InGaAs quantum-dot-in-ring structure by droplet epitaxy. J. Crystal Growth, 378, pp. 435–438.spa
dc.relation.referencesBüttiker, M.; Imry, Y.; Landauer, R. (1983). Josephson behavior in small normal one-dimensional rings. Phys. Lett. A, 96(7), pp. 365–367.spa
dc.relation.referencesChakraborty, T.; Manaselyan, A.; Barseghyan, M.; Laroze, D. (2018). Controllable continuous evolution of electronic states in a single quantum ring. Phys. Rev. B, 97(4), pp. 41304.spa
dc.relation.referencesCheng, K. A.; Yang, C. H.; Yang, M. J. (2000). Nanometer-size InAs/AlSb quantum wires: Fabrication and characterization of Aharonov–Bohm quantum rings. J. Appl. Phys., 88(9), pp. 5272–5276.spa
dc.relation.referencesCollier, T. P.; Saroka, V. A.; Portnoi, M. E. (2017). Tuning terahertz transitions in a double-gated quantum ring. Phys. Rev. B, 96(23), pp. 235430.spa
dc.relation.referencesCOMSOL Multiphysics, v. 5.3a. COMSOL AB, Stockholm, Sweden.spa
dc.relation.referencesEl-Bakkari, K.; Sali, A.; Iqraoun, E.; Rezzouk, A.; Es-Sbai, N.; Jamil, M. O. (2018). Effects of the temperature and pressure on the electronic and optical properties of an exciton in GaAs/Ga1−xAlxAs quantum ring. Physica B, 538, pp. 85–94.spa
dc.relation.referencesEscorcia, R.; García, L. F.; Mikhailov, I. D. (2018). Magnetoelectric effect in concentric quantum rings induced by shallow donor. Physica E, 99, pp. 269–274.spa
dc.relation.referencesFomin, V. M. (2014). Physics of Quantum Rings, Springer-Verlag, Berlin, pp. 27-193.spa
dc.relation.referencesGómez, C. A.; Marín, J. H.; Gutiérrez, W.; García, L. F. (2009). D-energy spectrum in toroidal quantum ring. J. Phys.: Conference Series, 167(1), pp. 12032.spa
dc.relation.referencesHe, Z.-L.; Bai, J.-Y.; Ye, S.-J.; Li, L.; Li, C.-X. (2017). Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings. Chinese Phys. Lett., 34(8), pp. 87301.spa
dc.relation.referencesHu, M.; Wang, H.; Gong, Q.; Wang, S. (2018). External electric field effect on the binding energy of a hydrogenic donor impurity in InGaAsP/InP concentric double quantum rings. International Journal of Modern Physics B, 32(11), pp. 1850138.spa
dc.relation.referencesKuroda, T.; Mano, T.; Ochiai, T.; Sanguinetti, S.; Sakoda, K.; Kido, G.; Koguchi, N. (2005). Optical transitions in quantum ring complexes. Phys. Rev. B, 72(20), pp. 205301.spa
dc.relation.referencesLee, C. M.; Li, J. Q.; Ruan, W. Y.; Lee, R. C. H. (2006). Optical spectra and intensities of a magnetic quantum ring bound to an off-center neutral donor D0. Phys. Rev. B, 73(21), pp. 212407.spa
dc.relation.referencesLinares-García, G.; Meza-Montes, L.; Stinaff, E.; Alsolamy, S. M.; Ware, M. E.; Mazur, Y. I.; Wang, Z. M.; Lee, J.; Salamo, G. J. (2016). Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy. Nanoscale Res. Lett., 11(1), pp. 309.spa
dc.relation.referencesLing, H. S.; Wang, S. Y.; Lee, C. P.; Lo, M. C. (2009). Characteristics of In(Ga)As quantum ring infrared photodetectors. J. Appl. Phys., 105(3), pp. 34504.spa
dc.relation.referencesLing, H.-S.; Lee, C.-P. (2007). Evolution of self-assembled InAs quantum ring formation. J. Appl. Phys., 102(2), pp. 24314.spa
dc.relation.referencesLorke, A; Garcia, J. M.; Blossey, R.; Luyken, R. J.; Petroff, P. M. (2003). Self-Organized InGaAs Quantum Rings - Fabrication and Spectroscopy. In B. Kramer (Ed.), Advances in Solid State Physics 43, pp. 125.spa
dc.relation.referencesLorke, A.; Johannes Luyken, R.; Govorov, A. O.; Kotthaus, J. P.; Garcia, J. M.; Petroff, P. M. (2000). Spectroscopy of Nanoscopic Semiconductor Rings. Phys. Rev. Lett., 84(10), pp. 2223–2226.spa
dc.relation.referencesMano, T.; Kuroda, T.; Mitsuishi, K.; Yamagiwa, M.; Guo, X.-J.; Furuya, K.; Sakoda, K.; Koguchi, N. (2007). Ring-shaped GaAs quantum dot laser grown by droplet epitaxy: Effects of post-growth annealing on structural and optical properties. J. Crystal Growth, 301–302, pp. 740–743.spa
dc.relation.referencesMughnetsyan, V. N.; Manaselyan, A. K.; Barseghyan, M. G.; Kirakosyan, A. A. (2013). Simultaneous effects of hydrostatic pressure and spin–orbit coupling on linear and nonlinear intraband optical absorption coefficients in a GaAs quantum ring. J. Lumin., 134, pp. 24–27.spa
dc.relation.referencesMughnetsyan, V.; Kirakosyan, A. (2017). Strain distribution and band structure of InAs/GaAs quantum ring superlattice. Superlattice Microstruct., 112, pp. 318–327.spa
dc.relation.referencesRosas, R.; Riera, R.; Marín, J. L. (2000). Electron states in a magnetic quantum ring. J. Phys.: Condensed Matter, 12(30), pp. 6851.spa
dc.relation.referencesShi, L.; Yan, Z. W. (2018). Stark shift and photoionization cross section of on-center and off-center donor impurity in a core/shell ellipsoidal quantum dot. Physica E, 98, pp. 111–117.spa
dc.relation.referencesVinasco, J. A.; Londoño, M. A.; Restrepo, R. L.; Mora-Ramos, M. E.; Feddi, E. M.; Radu, A.; Kasapoglu, E.; Morales, A. L.; Duque, C. A. (2017). Optical Absorption and Electroabsorption Related to Electronic and Single Dopant Transitions in Holey Elliptical GaAs Quantum Dots. Physica Status Solidi B, 255(4), pp. 1700470.spa
dc.relation.referencesWu, J.; Wang, Z. M.; Holmes, K.; Marega, E.; Zhou, Z.; Li, H.; Mazur, Y. I; Salamo, G. J. (2012). Laterally aligned quantum rings: From one-dimensional chains to two-dimensional arrays. Appl. Phys. Lett., 100(20), pp. 203117.spa
dc.relation.referencesZamani, A.; Setareh, F.; Azargoshasb, T.; Niknam, E. (2018). Spin-orbit coupling and applied magnetic field effects on electromagnetically induced transparency of a quantum ring at finite temperature. Superlattice Microstruct., 115, pp. 40–52.spa
dc.rightsRevista EIA - 2019spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1255spa
dc.subjectAnillo cuántico elípticospa
dc.subjectConfinamiento finitospa
dc.subjectMétodo de elementos finitosspa
dc.subjectPuntos cuánticosspa
dc.titlePropiedades electrónicas de un anillo cuántico elíptico con sección transversal rectangularspa
dc.title.translatedPropiedades electrónicas de un anillo cuántico elíptico con sección transversal rectangulareng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos