Publicación:
Un marco conceptual para la integración de las decisiones de Distribución de Instalaciones y de Programación de Producción en Celdas de Manufactura de Flujo en Línea

dc.contributor.authorCáceres-Gelvez, Sebastianspa
dc.contributor.authorArango-Serna, Martín Daríospa
dc.contributor.authorZapata-Cortés, Julián Andrésspa
dc.date.accessioned2022-06-01 00:00:00
dc.date.accessioned2022-06-17T20:21:29Z
dc.date.available2022-06-01 00:00:00
dc.date.available2022-06-17T20:21:29Z
dc.date.issued2022-06-01
dc.description.abstractObjetivo: En este trabajo se propone un marco conceptual para la integración de las decisiones de programación de la producción en celdas de manufactura de flujo en línea (FSGSP) y distribución de instalaciones con áreas desiguales (UAFLP). Materiales y Métodos: En primer lugar, se realiza una breve revisión bibliográfica para identificar los elementos, las técnicas de solución y las decisiones complementarias para los enfoques UAFLP, FSGSP y programación-distribución. Resultados: A partir de los resultados de la revisión bibliográfica se propone un modelo integrador de 4 fases para integrar estas decisiones, basado en un entorno de lean manufacturing. Las fases incluyen el proceso de recogida y preparación de datos de entrada, la definición del UAFLP, el FSGSP y otras decisiones complementarias, la optimización y la selección de la mejor alternativa. Conclusiones: La integración de estas decisiones utilizando el modelo propuesto puede lograr beneficios relacionados con la reducción de mudas, como la manipulación de materiales, los altos niveles de inventario de producto en proceso y los tiempos de preparación para contextos industriales reales.spa
dc.description.abstractObjective: In this paper, a conceptual framework for integrating production scheduling in flowshop manufacturing cells, known as flowshop group scheduling (FSGSP), and unequal-area facility layout (UAFLP) decisions is proposed. Materials and Methods: First, a brief literature review is carried out to identify the elements, solution techniques and complementary decisions for the UAFLP, FSGSP and layout-scheduling approaches. Results: Based on the results of the literature review a 4-phase integrative model is proposed to integrate these decisions, based on a lean manufacturing environment. The phases include the input data collection and preparation process, the definition of the UAFLP, FSGSP and other complementary decisions, the optimization of the decisions, and the selection of the best alternative. Conclusions: The integration of these decisions using the proposed framework can achieve benefits related to the reduction of mudas, such as material handling, high work-in-process inventory levels and setup times for real, industrial contexts.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.24050/reia.v19i38.1543
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5173
dc.identifier.urlhttps://doi.org/10.24050/reia.v19i38.1543
dc.language.isoengeng
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1543/1462
dc.relation.citationeditionNúm. 38 , Año 2022 : .spa
dc.relation.citationendpage21
dc.relation.citationissue38spa
dc.relation.citationstartpage3811 pp. 1
dc.relation.citationvolume19spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAbdi, M. R., and A. W. Labib. 2004. “Grouping and Selecting Products: The Design Key of Reconfigurable Manufacturing Systems (RMSs).” International Journal of Production Research 42 (3): 521–46. https://doi.org/10.1080/00207540310001613665.eng
dc.relation.referencesAh kioon, S., A.A. Bulgak, and T. Bektas. 2009. “Integrated Cellular Manufacturing Systems Design with Production Planning and Dynamic System Reconfiguration.” European Journal of Operational Research 192 (2): 414–28. https://doi.org/10.1016/j.ejor.2007.09.023.eng
dc.relation.referencesAhmadi, A., and M.R. Akbari Jokar. 2016. “An Efficient Multiple-Stage Mathematical Programming Method for Advanced Single and Multi-Floor Facility Layout Problems.” Applied Mathematical Modelling 40 (9–10): 5605–20. https://doi.org/10.1016/j.apm.2016.01.014.eng
dc.relation.referencesAiello, G., M. Enea, and G. Galante. 2006. “A Multi-Objective Approach to Facility Layout Problem by Genetic Search Algorithm and Electre Method.” Robotics and Computer-Integrated Manufacturing 22 (5–6): 447–55. https://doi.org/10.1016/j.rcim.2005.11.002.eng
dc.relation.referencesAiello, G., M. Enea, G. Galante, and G. La Scalia. 2013. “Multi Objective Genetic Algorithms for Unequal Area Facility Layout Problems: A Survey.” In Proc. Summer Sch. Francesco Turco, 11-13-September-2013:95–100. AIDI - Italian Association of Industrial Operations Professors. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84982881437&partnerID=40&md5=c5daf4f0d7e80b33fb0689701574575a.eng
dc.relation.referencesAlagoz, O., B.A. Norman, and A.E. Smith. 2008. “Determining Aisle Structures for Facility Designs Using a Hierarchy of Algorithms.” IIE Transactions (Institute of Industrial Engineers) 40 (11): 1019–31. https://doi.org/10.1080/07408170802167621.eng
dc.relation.referencesAlimian, M., V. Ghezavati, and R. Tavakkoli-Moghaddam. 2020. “New Integration of Preventive Maintenance and Production Planning with Cell Formation and Group Scheduling for Dynamic Cellular Manufacturing Systems.” Journal of Manufacturing Systems 56: 341–58. https://doi.org/10.1016/j.jmsy.2020.06.011.eng
dc.relation.referencesAllahyari, M.Z., and A. Azab. 2018. “Mathematical Modeling and Multi-Start Search Simulated Annealing for Unequal-Area Facility Layout Problem.” Expert Systems with Applications 91: 46–62. https://doi.org/10.1016/j.eswa.2017.07.049.eng
dc.relation.referencesAnjos, M.F., and M.V.C. Vieira. 2016. “An Improved Two-Stage Optimization-Based Framework for Unequal-Areas Facility Layout.” Optimization Letters 10 (7): 1379–92. https://doi.org/10.1007/s11590-016-1008-6.eng
dc.relation.referencesArango, M.D., J.A. Cano, and K.C. Álvarez. 2012. “MODELOS DE SISTEMAS MRP CERRADOS INTEGRANDO INCERTIDUMBRE (CLOSED MODELS OF MRP SYSTEMS CONSIDERING UNCERTAINTIES).” Revista EIA 9 (18): 61–76. Arango, M.D., C.A. Serna, J.A. Zapata, and A.F. Álvarez. 2014. “Vehicle Routing to Multiple Warehouses Using a Memetic Algorithm.” Procedia - Social and Behavioral Sciences 160 (December): 587–96. https://doi.org/10.1016/j.sbspro.2014.12.172.eng
dc.relation.referencesArango, M.D., J.A. Zapata, and W.A. Jaimes. 2011. “APLICACIÓN DEL MODELO DE INVENTARIO MANEJADO POR EL VENDEDOR EN UNA EMPRESA DEL SECTOR ALIMENTARIO COLOMBIANO (VENDOR MANAGED INVENTORY APPLICATION IN A COLOMBIAN FOOD ENTERPRISE).” Revista EIA 8 (15): 21–32.eng
dc.relation.referencesArmour, G.C., and E.S. Buffa. 1963. “A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities.” Management Science 9 (2): 294–309. https://doi.org/10.1287/mnsc.9.2.294.eng
dc.relation.referencesBalaji, A.N., and S. Porselvi. 2014. “Artificial Immune System Algorithm and Simulated Annealing Algorithm for Scheduling Batches of Parts Based on Job Availability Model in a Multi-Cell Flexible Manufacturing System.” In Procedia Eng., edited by Yarlagadda P.K.D.V. and Xavior M.A., 97:1524–33. Elsevier Ltd. https://doi.org/10.1016/j.proeng.2014.12.436.eng
dc.relation.referencesBalakrishnan, J., and C.H. Cheng. 2007. “Multi-Period Planning and Uncertainty Issues in Cellular Manufacturing: A Review and Future Directions.” European Journal of Operational Research 177 (1): 281–309. https://doi.org/10.1016/j.ejor.2005.08.027.eng
dc.relation.referencesBalamurugan, K., V. Selladurai, and B. Ilamathi. 2006. “Design and Optimization of Manufacturing Facilities Layouts.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220 (8): 1249–57. https://doi.org/10.1243/09544054JEM382.eng
dc.relation.referencesBouabda, R., B. Jarboui, and A. Rebaï. 2011. “A Nested Iterated Local Search Algorithm for Scheduling a Flowline Manufacturing Cell with Sequence Dependent Family Setup Times.” In Int. Conf. Logist., LOGISTIQUA, 526–31. Hammamet. https://doi.org/10.1109/LOGISTIQUA.2011.5939454.eng
dc.relation.referencesBozer, Y.A., and C.-T. Wang. 2012. “A Graph-Pair Representation and MIP-Model-Based Heuristic for the Unequal-Area Facility Layout Problem.” European Journal of Operational Research 218 (2): 382–91. https://doi.org/10.1016/j.ejor.2011.10.052.eng
dc.relation.referencesCastillo, I., and T. Sim. 2004. “A Spring-Embedding Approach for the Facility Layout Problem.” Journal of the Operational Research Society 55 (1): 73–81. https://doi.org/10.1057/palgrave.jors.2601647.eng
dc.relation.referencesCastillo, I., J. Westerlund, S. Emet, and T. Westerlund. 2005. “Optimization of Block Layout Design Problems with Unequal Areas: A Comparison of MILP and MINLP Optimization Methods.” Computers and Chemical Engineering 30 (1): 54–69. https://doi.org/10.1016/j.compchemeng.2005.07.012.eng
dc.relation.referencesCastillo, I., and T. Westerlund. 2005. “An ε-Accurate Model for Optimal Unequal-Area Block Layout Design.” Computers and Operations Research 32 (3): 429–47. https://doi.org/10.1016/S0305-0548(03)00246-6.eng
dc.relation.referencesChang, M.-S., and T.-C. Ku. 2013. “A Slicing Tree Representation and QCP-Model-Based Heuristic Algorithm for the Unequal-Area Block Facility Layout Problem.” Mathematical Problems in Engineering 2013. https://doi.org/10.1155/2013/853586.eng
dc.relation.referencesCosta, A., F.V. Cappadonna, and S. Fichera. 2020. “Minimizing Makespan in a Flow Shop Sequence Dependent Group Scheduling Problem with Blocking Constraint.” Engineering Applications of Artificial Intelligence 89. https://doi.org/10.1016/j.engappai.2019.103413.eng
dc.relation.referencesCuatrecasas-Arbós, Lluís. 2009. Diseño avanzado de procesos y plantas de producción flexible. Técnicas de diseño y herramientas gráficas con soporte informático. Barcelona: Profit.eng
dc.relation.referencesDennis, Pascal. 2015. Lean Production Simplified: A Plain-Language Guide to the World’s Most Powerful Production System. Third edition. Boca Raton: CRC Press, Taylor & Francis Group.eng
dc.relation.referencesDrira, A., H. Pierreval, and S. Hajri-Gabouj. 2007. “Facility Layout Problems: A Survey.” Annual Reviews in Control 31 (2): 255–67. https://doi.org/10.1016/j.arcontrol.2007.04.001.eng
dc.relation.referencesEbrahimi, A., R. Kia, and A.R. Komijan. 2016. “Solving a Mathematical Model Integrating Unequal-Area Facilities Layout and Part Scheduling in a Cellular Manufacturing System by a Genetic Algorithm.” SpringerPlus 5 (1). https://doi.org/10.1186/s40064-016-2773-5.eng
dc.relation.referencesFahmy, S.A. 2016. “A Genetic Algorithm for Solving the Integrated Cell Formation, Layout and Scheduling Problem.” In Proc. Int. Conf. Ind. Eng. Oper. Manage., 8-10 March 2016:224–30. IEOM Society. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018401527&partnerID=40&md5=d183e14b143b3aa2363ff9e2d2f9a018.eng
dc.relation.referencesFahmy, S.A. 2017. “Optimal Design and Scheduling of Cellular Manufacturing Systems: An Experimental Study.” In IEEE Int. Conf. Syst., Man, Cybern., SMC - Conf. Proc., 4532–37. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/SMC.2016.7844945.eng
dc.relation.referencesFrança, P.M., J.N.D. Gupta, A.S. Mendes, P. Moscato, and K.J. Veltink. 2005. “Evolutionary Algorithms for Scheduling a Flowshop Manufacturing Cell with Sequence Dependent Family Setups.” Computers and Industrial Engineering 48 (3): 491–506. https://doi.org/10.1016/j.cie.2003.11.004.eng
dc.relation.referencesGarcía-Hernández, L., J.M. Palomo-Romero, L. Salas-Morera, A. Arauzo-Azofra, and H. Pierreval. 2015. “A Novel Hybrid Evolutionary Approach for Capturing Decision Maker Knowledge into the Unequal Area Facility Layout Problem.” Expert Systems with Applications 42 (10): 4697–4708. https://doi.org/10.1016/j.eswa.2015.01.037.eng
dc.relation.referencesGarcía-Hernández, L., H. Pierreval, L. Salas-Morera, and A. Arauzo-Azofra. 2013. “Handling Qualitative Aspects in Unequal Area Facility Layout Problem: An Interactive Genetic Algorithm.” Applied Soft Computing Journal 13 (4): 1718–27. https://doi.org/10.1016/j.asoc.2013.01.003.eng
dc.relation.referencesGarcía-Hernández, L., L. Salas-Morera, C. Carmona-Muñoz, A. Abraham, and S. Salcedo-Sanz. 2020. “A Novel Multi-Objective Interactive Coral Reefs Optimization Algorithm for the Unequal Area Facility Layout Problem.” Swarm and Evolutionary Computation 55. https://doi.org/10.1016/j.swevo.2020.100688.eng
dc.relation.referencesGarcía-Hernández, L., L. Salas-Morera, C. Carmona-Muñoz, J.A. García-Hernández, and S. Salcedo-Sanz. 2020. “A Novel Island Model Based on Coral Reefs Optimization Algorithm for Solving the Unequal Area Facility Layout Problem.” Engineering Applications of Artificial Intelligence 89. https://doi.org/10.1016/j.engappai.2019.103445.eng
dc.relation.referencesGarcía-Hernández, L., L. Salas-Morera, J.A. García-Hernández, S. Salcedo-Sanz, and J. Valente de Oliveira. 2019. “Applying the Coral Reefs Optimization Algorithm for Solving Unequal Area Facility Layout Problems.” Expert Systems with Applications 138. https://doi.org/10.1016/j.eswa.2019.07.036.eng
dc.relation.referencesGelogullari, C.A., and R. Logendran. 2010. “Group-Scheduling Problems in Electronics Manufacturing.” Journal of Scheduling 13 (2): 177–202. https://doi.org/10.1007/s10951-009-0147-3.eng
dc.relation.referencesGilland, Wendell G. 2002. “A Simulation Study Comparing Performance of CONWIP and Bottleneck-Based Release Rules.” Production Planning & Control 13 (2): 211–19. https://doi.org/10.1080/09537280110069784.eng
dc.relation.referencesGonçalves, J.F., and M.G.C. Resende. 2015. “A Biased Random-Key Genetic Algorithm for the Unequal Area Facility Layout Problem.” European Journal of Operational Research 246 (1): 86–107. https://doi.org/10.1016/j.ejor.2015.04.029.eng
dc.relation.referencesGupta, J.N.D., and J.E. Schaller. 2006. “Minimizing Flow Time in a Flow-Line Manufacturing Cell with Family Setup Times.” Journal of the Operational Research Society 57 (2): 163–76. https://doi.org/10.1057/palgrave.jors.2601971.eng
dc.relation.referencesHam, I., K. Hitomi, and T. Yoshida. 1985. Group Technology: Applications to Production Management. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-009-4976-8.eng
dc.relation.referencesHamed Hendizadeh, S., T.Y. ElMekkawy, and G. Gary Wang. 2007. “Bi-Criteria Scheduling of a Flowshop Manufacturing Cell with Sequence Dependent Setup Times.” European Journal of Industrial Engineering 1 (4): 391–413.eng
dc.relation.referencesHamed Hendizadeh, S., H. Faramarzi, S.A. Mansouri, J.N.D. Gupta, and T. Y ElMekkawy. 2008. “Meta-Heuristics for Scheduling a Flowline Manufacturing Cell with Sequence Dependent Family Setup Times.” International Journal of Production Economics 111 (2): 593–605. https://doi.org/10.1016/j.ijpe.2007.02.031.eng
dc.relation.referencesHoushyar, A.N., Z.B. Leman, M.K.A.M. Ariffin, N. Ismail, H.P. Moghadam, and H. Iranmanesh. 2016. “Proposed Linear-Mathematical Model for Configuring Cell and Designing Unequal-Area Facility Layout in Dynamic Cellular Manufacturing System.” International Journal of Industrial and Systems Engineering 22 (3): 332–57. https://doi.org/10.1504/IJISE.2016.074710.eng
dc.relation.referencesHutchins, D.C. 2008. Hoshin Kanri: The Strategic Approach to Continuous Improvement. Aldershot, England ; Burlington, VT: Gower.eng
dc.relation.referencesIbrahem, A.-M., T. Elmekkawy, and Q. Peng. 2014. “Robust Metaheuristics for Scheduling Cellular Flowshop with Family Sequence-Dependent Setup Times.” In Procedia CIRP, 17:428–33. Windsor, ON: Elsevier B.V. https://doi.org/10.1016/j.procir.2014.01.072.eng
dc.relation.referencesIrani, S.A., ed. 1999. Handbook of Cellular Manufacturing Systems. New York: Wiley.eng
dc.relation.referencesJankovits, I., C. Luo, M.F. Anjos, and A. Vannelli. 2011. “A Convex Optimisation Framework for the Unequal-Areas Facility Layout Problem.” European Journal of Operational Research 214 (2): 199–215. https://doi.org/10.1016/j.ejor.2011.04.013.eng
dc.relation.referencesKang, S., and J. Chae. 2017. “Harmony Search for the Layout Design of an Unequal Area Facility.” Expert Systems with Applications 79: 269–81. https://doi.org/10.1016/j.eswa.2017.02.047.eng
dc.relation.referencesKazemi, M., S. Poormoaied, and G. Eslami. 2012. “Optimizing Combination of Job Shop Scheduling and Quadratic Assignment Problem through Multi-Objective Decision Making Approach.” Management Science Letters 2 (6): 2011–18. https://doi.org/10.5267/j.msl.2012.06.020.eng
dc.relation.referencesKeshavarz, T., N. Salmasi, and M. Varmazyar. 2014. “Minimizing Total Completion Time in the Flexible Flowshop Sequence-Dependent Group Scheduling Problem.” Annals of Operations Research 226 (1): 351–77. https://doi.org/10.1007/s10479-014-1667-6.eng
dc.relation.referencesKeshavarz, T., N. Salmasi, and M. Varmazyar. 2019. “Flowshop Sequence-Dependent Group Scheduling with Minimisation of Weighted Earliness and Tardiness.” European Journal of Industrial Engineering 13 (1): 54–80. https://doi.org/10.1504/EJIE.2019.097920.eng
dc.relation.referencesKhalid, Q.S., M. Arshad, S. Maqsood, M. Jahanzaib, A.R. Babar, I. Khan, J. Mumtaz, and S. Kim. 2019. “Hybrid Particle Swarm Algorithm for Products’ Scheduling Problem in Cellular Manufacturing System.” Symmetry 11 (6). https://doi.org/10.3390/sym11060729.eng
dc.relation.referencesKia, R., A. Baboli, N. Javadian, R. Tavakkoli-Moghaddam, M. Kazemi, and J. Khorrami. 2012. “Solving a Group Layout Design Model of a Dynamic Cellular Manufacturing System with Alternative Process Routings, Lot Splitting and Flexible Reconfiguration by Simulated Annealing.” Computers and Operations Research 39 (11): 2642–58. https://doi.org/10.1016/j.cor.2012.01.012.eng
dc.relation.referencesKomarudin, and K.Y. Wong. 2010. “Applying Ant System for Solving Unequal Area Facility Layout Problems.” European Journal of Operational Research 202 (3): 730–46. https://doi.org/10.1016/j.ejor.2009.06.016.eng
dc.relation.referencesKonak, A., S. Kulturel-Konak, B.A. Norman, and A.E. Smith. 2006. “A New Mixed Integer Programming Formulation for Facility Layout Design Using Flexible Bays.” Operations Research Letters 34 (6): 660–72. https://doi.org/10.1016/j.orl.2005.09.009.eng
dc.relation.referencesKulturel-Konak, S. 2012. “A Linear Programming Embedded Probabilistic Tabu Search for the Unequal-Area Facility Layout Problem with Flexible Bays.” European Journal of Operational Research 223 (3): 614–25. https://doi.org/10.1016/j.ejor.2012.07.019.eng
dc.relation.referencesKulturel-Konak, S., and A. Konak. 2011. “Ant Colony Optimization for the Unequal-Area Facility Layout Problem.” In ECTA FCTA - Proc. Int. Conf. Evol. Comput. Theory Appl. Int. Conf. Fuzzy Comput. Theory Appl., 273–77. Paris. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84862221526&partnerID=40&md5=622e4b28b33c89cc05b65e100eae8c1e.eng
dc.relation.referencesKulturel-Konak, S., and A. Konak. 2013. “Linear Programming Based Genetic Algorithm for the Unequal Area Facility Layout Problem.” International Journal of Production Research 51 (14): 4302–24. https://doi.org/10.1080/00207543.2013.774481.eng
dc.relation.referencesKulturel-Konak, S., A.E. Smith, and B.A. Norman. 2004. “Layout Optimization Considering Production Uncertainty and Routing Flexibility.” International Journal of Production Research 42 (21): 4475–93. https://doi.org/10.1080/00207540412331325567.eng
dc.relation.referencesLin, S.-W., J.N.D. Gupta, K.-C. Ying, and Z.-J. Lee. 2009. “Using Simulated Annealing to Schedule a Flowshop Manufacturing Cell with Sequence-Dependent Family Setup Times.” International Journal of Production Research 47 (12): 3205–17. https://doi.org/10.1080/00207540701813210.eng
dc.relation.referencesLin, S.-W., and K.-C. Ying. 2012. “Scheduling a Bi-Criteria Flowshop Manufacturing Cell with Sequence-Dependent Family Setup Times.” European Journal of Industrial Engineering 6 (4): 474–96. https://doi.org/10.1504/EJIE.2012.047666.eng
dc.relation.referencesLin, S.-W., and K.-C. Ying. 2019. “Makespan Optimization in a No-Wait Flowline Manufacturing Cell with Sequence-Dependent Family Setup Times.” Computers and Industrial Engineering 128: 1–7. https://doi.org/10.1016/j.cie.2018.12.025.eng
dc.relation.referencesLin, S.-W., K.-C. Ying, and Z.-J. Lee. 2009. “Metaheuristics for Scheduling a Non-Permutation Flowline Manufacturing Cell with Sequence Dependent Family Setup Times.” Computers and Operations Research 36 (4): 1110–21. https://doi.org/10.1016/j.cor.2007.12.010.eng
dc.relation.referencesLiou, C.-D., and Y.-C. Hsieh. 2015. “A Hybrid Algorithm for the Multi-Stage Flow Shop Group Scheduling with Sequence-Dependent Setup and Transportation Times.” International Journal of Production Economics 170: 258–67. https://doi.org/10.1016/j.ijpe.2015.10.002.eng
dc.relation.referencesLiu, J., and J. Liu. 2019. “Applying Multi-Objective Ant Colony Optimization Algorithm for Solving the Unequal Area Facility Layout Problems.” Applied Soft Computing Journal 74: 167–89. https://doi.org/10.1016/j.asoc.2018.10.012.eng
dc.relation.referencesLiu, J., H. Zhang, K. He, and S. Jiang. 2018. “Multi-Objective Particle Swarm Optimization Algorithm Based on Objective Space Division for the Unequal-Area Facility Layout Problem.” Expert Systems with Applications 102: 179–92. https://doi.org/10.1016/j.eswa.2018.02.035.eng
dc.relation.referencesLiu, Q., and R.D. Meller. 2007. “A Sequence-Pair Representation and MIP-Model-Based Heuristic for the Facility Layout Problem with Rectangular Departments.” IIE Transactions (Institute of Industrial Engineers) 39 (4): 377–94. https://doi.org/10.1080/07408170600844108.eng
dc.relation.referencesLu, D., and R. Logendran. 2013. “Bi-Criteria Group Scheduling with Sequence-Dependent Setup Time in a Flow Shop.” Journal of the Operational Research Society 64 (4): 530–46. https://doi.org/10.1057/jors.2012.61.eng
dc.relation.referencesLu, Shaojun, Xinbao Liu, Jun Pei, and Panos M. Pardalos. 2021. “Permutation Flowshop Manufacturing Cell Scheduling Problems with Deteriorating Jobs and Sequence Dependent Setup Times under Dominant Machines.” Optimization Letters 15 (2): 537–51. https://doi.org/10.1007/s11590-018-1322-2.eng
dc.relation.referencesMallikarjuna, K., and K.S. Babu. 2018. “Population Based Stochastic Technique for Optimum Design of Open Field Layout with Integrated Scheduling.” In Int. Conf. Comput., Commun. Netw. Technol., ICCCNT. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICCCNT.2018.8494049.eng
dc.relation.referencesMar-Ortiz, J., J.L. González-Velarde, and B. Adenso-Díaz. 2012. “Reverse Logistics Models and Algorithms: Optimizing WEEE Recovery Systems.” Computacion y Sistemas 16 (4): 491–96.eng
dc.relation.referencesMeisel, J.D., and L.K. Prado. 2010. “UN ALGORITMO GENÉTICO HÍBRIDO Y UN ENFRIAMIENTO SIMULADO PARA SOLUCIONAR EL PROBLEMA DE PROGRAMACIÓN DE PEDIDOS JOB SHOP (A HYBRID GENETIC ALGORITHM AND A SIMULATED ANNEALING FOR SOLVING THE JOB SHOP SCHEDULING PROBLEM).” Revista EIA 7 (13): 39–51.eng
dc.relation.referencesMeller, R.D., W. Chen, and H.D. Sherali. 2007. “Applying the Sequence-Pair Representation to Optimal Facility Layout Designs.” Operations Research Letters 35 (5): 651–59. https://doi.org/10.1016/j.orl.2006.10.007.eng
dc.relation.referencesMeller, R.D., and K.-Y. Gau. 1996. “The Facility Layout Problem: Recent and Emerging Trends and Perspectives.” Journal of Manufacturing Systems 15 (5): 351–66. https://doi.org/10.1016/0278-6125(96)84198-7. Montoya, J.R., G.L. Rodríguez, and L. Merchán. 2007. “IMPACTO DE ESTRATEGIAS DE COLABORACIÓN ENTRE DOS ACTORES DE UNA CADENA LOGÍSTICA EN LA PROGRAMACIÓN DE LA PRODUCCIÓN.” Revista EIA 4 (8): 83–98.eng
dc.relation.referencesMuther, Richard. 1973. Systematic Layout Planning. 2d ed. [rev. and enl.]. Boston: Cahners Books. Naderi, B., and N. Salmasi. 2012. “Permutation Flowshops in Group Scheduling with Sequence-Dependent Setup Times.” European Journal of Industrial Engineering 6 (2): 177–98. https://doi.org/10.1504/EJIE.2012.045604.eng
dc.relation.referencesNahmias, Steven, and Tava L. Olsen. 2015. Production and Operations Analysis. 7. ed. Long Grove, Ill: Waveland Pr.eng
dc.relation.referencesNeufeld, J.S., J.N.D. Gupta, and U. Buscher. 2015. “Minimising Makespan in Flowshop Group Scheduling with Sequence-Dependent Family Set-up Times Using Inserted Idle Times.” International Journal of Production Research 53 (6): 1791–1806. https://doi.org/10.1080/00207543.2014.961209.eng
dc.relation.referencesPaes, F.G., A.A. Pessoa, and T. Vidal. 2017. “A Hybrid Genetic Algorithm with Decomposition Phases for the Unequal Area Facility Layout Problem.” European Journal of Operational Research 256 (3): 742–56. https://doi.org/10.1016/j.ejor.2016.07.022.eng
dc.relation.referencesPalomo-Romero, J.M., L. Salas-Morera, and L. García-Hernández. 2017. “An Island Model Genetic Algorithm for Unequal Area Facility Layout Problems.” Expert Systems with Applications 68: 151–62. https://doi.org/10.1016/j.eswa.2016.10.004.eng
dc.relation.referencesQin, H., Z.-H. Zhang, and D. Bai. 2016. “Permutation Flowshop Group Scheduling with Position-Based Learning Effect.” Computers and Industrial Engineering 92: 1–15. https://doi.org/10.1016/j.cie.2015.12.001.eng
dc.relation.referencesRanjbar, Mohammad, and Mojtaba Najafian Razavi. 2012. “A Hybrid Metaheuristic for Concurrent Layout and Scheduling Problem in a Job Shop Environment.” The International Journal of Advanced Manufacturing Technology 62 (9–12): 1249–60. https://doi.org/10.1007/s00170-011-3859-4.eng
dc.relation.referencesRenna, P., and M. Ambrico. 2015. “Design and Reconfiguration Models for Dynamic Cellular Manufacturing to Handle Market Changes.” International Journal of Computer Integrated Manufacturing 28 (2): 170–86. https://doi.org/10.1080/0951192X.2013.874590.eng
dc.relation.referencesRipon, K.S.N., K. Glette, M. Hovin, and J. Torresen. 2012. “A Multi-Objective Evolutionary Algorithm for Solving Integrated Scheduling and Layout Planning Problems in Manufacturing Systems.” In IEEE Conf. Evol. Adapt. Intell. Syst., EAIS - Proc., 157–63. Madrid. https://doi.org/10.1109/EAIS.2012.6232822.eng
dc.relation.referencesRipon, K.S.N., and J. Torresen. 2014. “Integrated Job Shop Scheduling and Layout Planning: A Hybrid Evolutionary Method for Optimizing Multiple Objectives.” Evolving Systems 5 (2): 121–32. https://doi.org/10.1007/s12530-013-9092-7.eng
dc.relation.referencesRother, M., and J. Shook. 2009. Learning to See: Value-Stream Mapping to Create Value and Eliminate Muda. Version 1.4. A Lean Tool Kit Method and Workbook. Cambridge, Mass: Lean Enterprise Inst.eng
dc.relation.referencesSalas-Morera, L., L. García-Hernández, A. Antoli-Cabrera, and C. Carmona-Muñoz. 2020. “Using Eye-Tracking into Decision Makers Evaluation in Evolutionary Interactive UA-FLP Algorithms.” Neural Computing and Applications. https://doi.org/10.1007/s00521-020-04781-2.eng
dc.relation.referencesSalazar, A.F., L.C. Vargas, C.E. Añasco, and J.P. Orejuela. 2010. “PROPUESTA DE DISTRIBUCIÓN EN PLANTA BIETAPA EN AMBIENTES DE MANUFACTURA FLEXIBLE MEDIANTE EL PROCESO ANALÍTICO JERÁRQUICO (BIPHASE PLANT DISTRIBUTION PROPOSED IN FLEXIBLE MANUFACTURING ENVIRONMENT BY THE ANALYTIC HIERARCHY PROCESS).” Revista EIA 7 (14): 161–75.eng
dc.relation.referencesSalimpour, Saeideh, Hani Pourvaziri, and Ahmed Azab. 2021. “Semi-Robust Layout Design for Cellular Manufacturing in a Dynamic Environment.” Computers & Operations Research 133 (September): 105367. https://doi.org/10.1016/j.cor.2021.105367.eng
dc.relation.referencesSalmasi, N., R. Logendran, and M.R. Skandari. 2010. “Total Flow Time Minimization in a Flowshop Sequence-Dependent Group Scheduling Problem.” Computers and Operations Research 37 (1): 199–212. https://doi.org/10.1016/j.cor.2009.04.013.eng
dc.relation.referencesSalmasi, N., R. Logendran, and M.R. Skandari. 2011. “Makespan Minimization of a Flowshop Sequence-Dependent Group Scheduling Problem.” International Journal of Advanced Manufacturing Technology 56 (5–8): 699–710. https://doi.org/10.1007/s00170-011-3206-9.eng
dc.relation.referencesSchaller, J.E. 2005. “An Improved Branch and Bound Procedure for Scheduling a Flow Line Manufacturing Cell.” International Journal of Production Research 43 (22): 4697–4720. https://doi.org/10.1080/00207540500185216.eng
dc.relation.referencesSchaller, J.E., J.N.D. Gupta, and A.J. Vakharia. 2000. “Scheduling a Flowline Manufacturing Cell with Sequence Dependent Family Setup Times.” European Journal of Operational Research 125 (2): 324–39. https://doi.org/10.1016/S0377-2217(99)00387-2.eng
dc.relation.referencesSelim, H.M., R.G. Askin, and A.J. Vakharia. 1998. “Cell Formation in Group Technology: Review, Evaluation and Directions for Future Research.” Computers & Industrial Engineering 34 (1): 3–20. https://doi.org/10.1016/S0360-8352(97)00147-2.eng
dc.relation.referencesSeyed, Mohammad Ghadirpour, Donya Rahmani, and Ghorbanali Moslemipour. 2020. “Routing Flexibility for Unequal–Area Stochastic Dynamic Facility Layout Problem in Flexible Manufacturing Systems.” International Journal of Industiral Engineering & Producion Research 31 (2). https://doi.org/10.22068/ijiepr.31.2.269.eng
dc.relation.referencesSherali, H.D., B.M.P. Fraticelli, and R.D. Meller. 2003. “Enhanced Model Formulations for Optimal Facility Layout.” Operations Research 51 (4): 629–44. https://doi.org/10.1287/opre.51.4.629.16096. Singh, N. 1993. “Design of Cellular Manufacturing Systems: An Invited Review.” European Journal of Operational Research 69 (3): 284–91. https://doi.org/10.1016/0377-2217(93)90016-G.eng
dc.relation.referencesSolimanpur, M., and A. Elmi. 2011. “A Tabu Search Approach for Group Scheduling in Buffer-Constrained Flow Shop Cells.” International Journal of Computer Integrated Manufacturing 24 (3): 257–68. https://doi.org/10.1080/0951192X.2011.552527.eng
dc.relation.referencesStephens, Matthew P., and Fred E. Meyers. 2013. Manufacturing Facilities Design and Material Handling. Fifth edition. West Lafayette, Indiana: Purdue University Press.eng
dc.relation.referencesTennant, C., and P. Roberts. 2001. “Hoshin Kanri: Implementing the Catchball Process.” Long Range Planning 34 (3): 287–308. https://doi.org/10.1016/S0024-6301(01)00039-5.eng
dc.relation.referencesTompkins, James A., ed. 2010. Facilities Planning. 4th ed. Hoboken, NJ: J. Wiley.eng
dc.relation.referencesUlutas, B.H., and S. Kulturel-Konak. 2012. “An Artificial Immune System Based Algorithm to Solve Unequal Area Facility Layout Problem.” Expert Systems with Applications 39 (5): 5384–95. https://doi.org/10.1016/j.eswa.2011.11.046.eng
dc.relation.referencesWang, K.-J., and K.-H. Chen. 2008. “An Integrated Facility-Design Model for the Generator-Manufacturing Industry.” Production Planning and Control 19 (5): 475–85. https://doi.org/10.1080/09537280802088659.eng
dc.relation.referencesWemmerlöv, U., and N.L. Hyer. 1989. “Cellular Manufacturing in the U.S. Industry: A Survey of Users.” International Journal of Production Research 27 (9): 1511–30. https://doi.org/10.1080/00207548908942637.eng
dc.relation.referencesXiao, X., Y. Hu, W. Wang, and W. Ren. 2019. “A Robust Optimization Approach for Unequal-Area Dynamic Facility Layout with Demand Uncertainty.” In Procedia CIRP, edited by Butala P., Govekar E., and Vrabic R., 81:594–99. Elsevier B.V. https://doi.org/10.1016/j.procir.2019.03.161.eng
dc.relation.referencesXiao, Y.J., Y. Zheng, L.M. Zhang, and Y.H. Kuo. 2016. “A Combined Zone-LP and Simulated Annealing Algorithm for Unequal-Area Facility Layout Problem.” Advances in Production Engineering And Management 11 (4): 259–70. https://doi.org/10.14743/apem2016.4.225.eng
dc.relation.referencesXie, Y., S. Zhou, Y. Xiao, S. Kulturel-Konak, and A. Konak. 2018. “A β-Accurate Linearization Method of Euclidean Distance for the Facility Layout Problem with Heterogeneous Distance Metrics.” European Journal of Operational Research 265 (1): 26–38. https://doi.org/10.1016/j.ejor.2017.07.052.eng
dc.relation.referencesYazdani Sabouni, M.T., and R. Logendran. 2018. “Lower Bound Development in a Flow Shop Electronic Assembly Problem with Carryover Sequence-Dependent Setup Time.” Computers and Industrial Engineering 122: 149–60. https://doi.org/10.1016/j.cie.2018.05.033.eng
dc.relation.referencesYin, Y., and K. Yasuda. 2006. “Similarity Coefficient Methods Applied to the Cell Formation Problem: A Taxonomy and Review.” International Journal of Production Economics 101 (2): 329–52. https://doi.org/10.1016/j.ijpe.2005.01.014.eng
dc.relation.referencesYing, K.-C., J.N.D. Gupta, S.-W. Lin, and Z.-J. Lee. 2010. “Permutation and Non-Permutation Schedules for the Flowline Manufacturing Cell with Sequence Dependent Family Setups.” International Journal of Production Research 48 (8): 2169–84. https://doi.org/10.1080/00207540802534707.eng
dc.relation.referencesYing, K.-C., Z.-J. Lee, C.-C. Lu, and S.-W. Lin. 2012. “Metaheuristics for Scheduling a No-Wait Flowshop Manufacturing Cell with Sequence-Dependent Family Setups.” International Journal of Advanced Manufacturing Technology 58 (5–8): 671–82. https://doi.org/10.1007/s00170-011-3419-y.eng
dc.relation.referencesZanjirani Farahani, R., and M. Hekmatfar, eds. 2009. Facility Location: Concepts, Models, Algorithms and Case Studies. Contributions to Management Science. Heidelberg: Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2151-2.eng
dc.relation.referencesZhou, Jia-Li, Jie-Sheng Wang, Yong-Xin Zhang, Qing-Sheng Guo, Hui Li, and Yi-Xuan Lu. 2020. “Particle Swarm Optimization Algorithm with Variety Inertia Weights to Solve Unequal Area Facility Layout Problem.” In 2020 Chinese Control And Decision Conference (CCDC), 4240–45. Hefei, China: IEEE. https://doi.org/10.1109/CCDC49329.2020.9163977.eng
dc.rightsRevista EIA - 2022eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0eng
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1543eng
dc.subjectConceptual modeleng
dc.subjectFlowshop group schedulingeng
dc.subjectUnequal-area facility layouteng
dc.subjectCellular manufacturing systemseng
dc.subjectMaterial handling costseng
dc.subjectTotal weighted tardinesseng
dc.subjectLean manufacturingeng
dc.subjectModelo conceptualspa
dc.subjectProgramación de producción de grupos con flujo en líneaspa
dc.subjectDistribución de instalaciones con áreas desigualesspa
dc.subjectSistemas de celdas de manufacturaspa
dc.subjectCostos de manejo de materialesspa
dc.subjectTardanza ponderada totalspa
dc.subjectProducción esbeltaspa
dc.titleUn marco conceptual para la integración de las decisiones de Distribución de Instalaciones y de Programación de Producción en Celdas de Manufactura de Flujo en Líneaspa
dc.title.translatedA conceptual framework for integrating Facility Layout and Production Scheduling in Flowshop Manufacturing Cells decisionseng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng
dspace.entity.typePublication
Archivos