Publicación:
Simulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®

dc.contributor.authorPerez Sanchez, Amauryspa
dc.contributor.authorRanero-González, Elizabethspa
dc.contributor.authorPérez-Sánchez, Eddy J.spa
dc.contributor.authorSegura-Silva, Rutdali Mariaspa
dc.date.accessioned2020-12-31 14:30:36
dc.date.accessioned2022-06-17T20:20:51Z
dc.date.available2020-12-31 14:30:36
dc.date.available2022-06-17T20:20:51Z
dc.date.issued2020-12-31
dc.description.abstractLa L-fenilalanina (L-Fe) es uno de los ocho aminoácidos esenciales para el cuerpo humano. En el presente trabajo se efectuó la simulación del proceso de producción de la L-Fe por la ruta fermentativa mediante el simulador SuperPro Designerâ, con el fin de conocer sus indicadores de rentabilidad más importantes bajo las condiciones económicas actuales de Cuba. También se efectuó un estudio de sensibilidad con el objetivo de saber a partir de qué valor del parámetro precio de venta unitario del frasco de L-Fe se comienza a obtener un valor positivo del indicador Valor Actual Neto (VAN). Se obtuvo un margen bruto de 70,15 %, un costo unitario de producción de USD $ 66,75 por frasco y un retorno de la inversión de 38,92 %. A partir de un valor del precio de venta unitario del frasco de L-Fe de USD $ 115,3 empieza a ser rentable la planta de producción. El proceso de producción de L-Fe puede considerarse de rentable y factible desde el punto de vista técnico-económico atendiendo a los resultados obtenidos de VAN (USD $ 14 040 000), Tasa Interna de Retorno (49,14 %) y Período de Recuperación de la Inversión (2,57 años).spa
dc.description.abstractL-phenylalanine (L-Phe) is one of the eight essential amino acids for the human body. In this work, the simulation of the L-Phe fermentative production process was carried out using the SuperPro Designer® simulator, in order to know its most important profitability indicators under the current economic conditions in Cuba. A sensitivity study was also accomplished with the objective of knowing from which value of the parameter unit selling price of an L-Phe bottle a positive value begins to be obtained of the indicator Net Present Value (NPV). A gross margin of 70.15%, a unit cost of production of USD $ 66.75 per bottle and a return on investment of 38.92% were obtained. From a value of the unit sale price of the L-Phe bottle of USD $ 115.3 the production plant starts to be profitable. The L-Phe production process can be considered profitable and feasible from the techno-economical point of view, based on the results obtained of NPV (USD $ 14,040,000), Internal Rate of Return (49.14%) and Payback Time (2.57 years).     eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v18i35.1417
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5119
dc.identifier.urlhttps://doi.org/10.24050/reia.v18i35.1417
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1417/1403
dc.relation.citationeditionNúm. 35 , Año 2021spa
dc.relation.citationendpage15
dc.relation.citationissue35spa
dc.relation.citationstartpage35017 pp. 1
dc.relation.citationvolume18spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAguiar, A. C. d.; Osorio-Tobón, J. F.; Silva, L. P. S.; Barbero, G. F.; Martínez, J. (2018). Economic analysis of oleoresin production from malagueta peppers (Capsicum frutescens) by supercritical fluid extraction. The Journal of Supercritical Fluids, 133, pp. 86-93. https://dx.doi.org/10.1016/j.supflu. 2017.09.031.spa
dc.relation.referencesAuli, N. A.; Sakinah, M.; Bakri, A. M. M. A.; Kamarudin, H.; Norazian, M. N. (2013). Simulation Of Xylitol Production: A Review. Australian Journal of Basic and Applied Sciences, 7(5), pp. 366-372.spa
dc.relation.referencesBaca, G. (2010). Evaluación de proyectos, 6ta ed., México D.F., McGraw-Hill/Interamericana Editores, S.A. de C.V, pp. 56-94.spa
dc.relation.referencesBáez-Viveros, J. L.; Flores, N., Juárez, K.; Castillo-España, P.; Bolivar, F.; Gosset, G. (2007). Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine. Microbial Cell Factories, 6(1), pp. 1-20. https://dx.doi.org/10.1186/1475-2859-6-30.spa
dc.relation.referencesBIOTOL. (1997). Biotechnological Innovations in Chemical Synthesis. Oxford, Butterworth-Heinemann, pp. 253-262.spa
dc.relation.referencesBongaerts, J.; Krämer, M.; Müller, U.; Raeven, L.; Wubbolts, M. (2001). Metabolic Engineering for Microbial Production of Aromatic Amino Acids and Derived Compounds. Metabolic Engineering, 3(4), pp. 289-300. https://dx.doi.org/10.1006/mben.2001.0196.spa
dc.relation.referencesDoroshenko, V. G.; Livshits, V. A.; Airich, L. G.; Shmagina, I. S.; Savrasova, E. A.; Ovsienko, M. V.; Mashko, S. V. (2015). Metabolic Engineering of Escherichia coli for the Production of Phenylalanine and Related Compounds. Applied Biochemistry and Microbiology, 51(7), pp. 733-750. https://dx.doi.org/10.1134/s0003683815070017.spa
dc.relation.referencesFINAR. (2019). Price List 2019-20, Gujarat, Finar Foundation,spa
dc.relation.referencesGarcía, J. M. (2008). La simulación de procesos en ingeniería química. Revista Investigación Científica, 4(2), pp. 1-9.spa
dc.relation.referencesGerigk, M.; Bujnicki, R.; Ganpo-Nkwenkwa, E.; Bongaerts, J.; Sprenger, G.; Takors, R. (2002). Process Control for Enhanced L-Phenylalanine Production Using Different Recombinant Escherichia coli Strains. Biotechnology and Bioengineering, 80(7), pp. 746-754. https://dx.doi.org/10.1002/bit.10428.spa
dc.relation.referencesGerigk, M. R.; Maass, D.; Kreutzer, A.; Sprenger, G.; Bongaerts, J.; Wubbolts, M.; Takors, R. (2002). Enhanced pilot-scale fed-batch L-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioprocess Biosyst. Eng., 25, pp. 43–52. https://dx.doi.org/0.1007/s00449-002-0280-2.spa
dc.relation.referencesHeinzle, E., Biwer, A. P., Cooney, C. L. (2006). Development of Sustainable Bioprocesses Modeling and Assessment. West Sussex, John Wiley & Sons, pp. 62-78.spa
dc.relation.referencesIntelligen. (2018). SuperPro Designer® (Version 10.0). Scotch Plains, Intelligen, Inc.spa
dc.relation.referencesIto, H.; Sato, K.; Matsui, K.; Sano, K.; Enei, H.; Hirose, Y. (1990). Molecular breeding of a Brevibacterium lactofermentum L-phenylalanine producer using a cloned prephenate dehydratase gene. Appl. Microbiol. Biotechnol., 33, pp. 190-195. https://dx.doi.org/10.1007/BF00176523.spa
dc.relation.referencesJenkins, S. (2020). Economic Indicators. Chemical Engineering, 127(2), pp. 56.spa
dc.relation.referencesKlausner, A. (1985). Building for Success in Phenylalanine. Biotechnology, 3(4), pp. 301-307.spa
dc.relation.referencesLee, C. S.; Chong, M. F.; Binner, E.; Gomes, R.; Robinson, J. (2018). Techno-economic assessment of scale-up ofbio-flocculant extraction and production by usingokra as biomass feedstock. Chemical Engineering Research and Design, 132, pp. 358–369. https://dx.doi.org/10.1016/j.cherd.2018.01.050.spa
dc.relation.referencesLiu, C. H.; Liao, C. C. (1994). Medium optimization for L-phenylalanine production by a tryptophan auxotroph of Corynebacterium glutamicum. Biotechnol. Lett., 16, pp. 801-806.spa
dc.relation.referencesLiu, Y.; Xu, Y.; Ding, D.; Wen, J.; Zhu, B.; Zhang, D. (2018). Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnology, 18(5), pp. 1-12. https://dx.doi.org/10.1186/s12896-018-0418-1.spa
dc.relation.referencesMani, S.; Sundaram, J.; Das, K. C. (2016). Process simulation and modeling: Anaerobic digestion of complex organic matter. Biomass and Bioenergy, 93, pp. 158-167. https://dx.doi.org/10.1016/j.biombioe.2016.07.018.spa
dc.relation.referencesMatche. (2020). Chemical Equipment Cost. Disponible en www.matche.com. [Consultado 12 de abril 2020].spa
dc.relation.referencesMcEvoy, J. J.; Joyce, A. (1974). Production of L-phenylalanine by DL-phenylalanine hydroxamate-resistant Tyr- mutants of Bacillus subtilis. Mol. Cell. Biochem., 4(3), pp. 191-195. https://dx.doi.org/10.1007/bf01731480.spa
dc.relation.referencesMeza, J. d. J. (2013). Evaluación financiera de proyectos, 3ra ed., Bogotá, D.C.: Ecoe Ediciones, pp. 133-199.spa
dc.relation.referencesMiranda, R. d. C.; Mendes, M. F. (2018). Simulation of the Extractive Distillation of Ethanol-Water System: Evaluation of the Influence of Different Solvents. New Materials, Compounds and Applications, 2(2), pp. 152-167.spa
dc.relation.referencesMolychem. (2019). Price List 2019-2021. Mumbai, Molychem.spa
dc.relation.referencesOxford. (2019). Price List 2020-2021 Maharashtra, Oxford Lab Fine Chem LLP.spa
dc.relation.referencesPeters, M. S., Timmerhaus, K. D., West, R. E. (2003). Plant Design and Economics for Chemical Engineers, 5th ed., New York: McGraw-Hill, pp. 226-275.spa
dc.relation.referencesRüffer, N.; Heidersdorf, U.; Kretzers, I.; Sprenger, G. A.; Raeven, L.; Takors, R. (2004). Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst Eng, 26, pp. 239–248. https://dx.doi.org/10.1007/ s00449-004-0354-4.spa
dc.relation.referencesSayar, N. A.; Pinar, O.; Kazan, D.; Sayar, A. A. (2019). Bioethanol Production From Turkish Hazelnut Husk Process Design and Economic Evaluation. Waste Biomass Valor, 10, pp. 909–923. https://dx.doi.org/10.1007/s12649-017-0103-y.spa
dc.relation.referencesSigma-Aldrich. (2020). L-Phenylalanine PharmaGrade. Disponible en: https://www.sigmaaldrich.com/catalog/product/sigma/p8740?lang=en&region=CU. [Consultado 27 de abril 2020].spa
dc.relation.referencesSinnott, R., Towler, G. (2020). Chemical Engineering Design, 6th ed., Oxford, Butterworth-Heinemann, pp. 275-361.spa
dc.relation.referencesSprenger, G. A. (2007). From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Applied Microbiology and Biotechnology, 75(4), pp. 739–749. https://dx.doi.org/10.1007/s00253-007-0931-y.spa
dc.relation.referencesSun, Z.; Gao, X.; Zhang, Y.; Gao, C. (2016). Separation and purification of L-phenylalanine from the fermentation broth by electrodialysis. Desalination and Water Treatment, 57(47), pp. 1-7. https://dx.doi.org/10.1080/19443994.2015. 1137082.spa
dc.relation.referencesTowler, G., Sinnott, R. (2013). Chemical Engineering Design. Principles, Practice and Economics of Plant and Process Design, 2nd ed., Oxford, Butterworth-Heinemann, pp. 389-425.spa
dc.relation.referencesVučurović, D. G.; Dodić, S. N.; Popov, S. D.; Dodić, J. M.; Grahovac, J. A. (2012). Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept. Bioresource Technology, 104, pp. 367–372. https://dx.doi.org/10.1016/j.biortech.2011.10.085.spa
dc.relation.referencesWu, J.; Liu, Y.; Zhao, S.; Sun, J.; Jin, Z.; Zhang, D. (2019). Application of Dynamic Regulation to Increase L-Phenylalanine Production in Escherichia coli. J. Microbiol. Biotechnol., 29(6), pp. 923–932. https://dx.doi.org/10.4014/ jmb.1901.01058.spa
dc.relation.referencesWVU. (2020) Batch Production of Aminoacids. Disponible en: https://cbe.statler.wvu.edu/files/d/450550ca-9cab-4688-a9b8-f73bc1c72707/ batch-production_of_ amino_acids.pdf. [Consultado 5 de febrero de 2020].spa
dc.relation.referencesYuan, P.; Cao, W.; Wang, Z.; Chen, K.; Li, Y.; Ouyang, P. (2015). Enhancement of L-phenylalanine production by engineered Escherichia coli using phased exponential L-tyrosine feeding combined with nitrogen source optimization. Journal of Bioscience and Bioengineering, 120(1), pp. 36-40. https://dx.doi.org /10.1016/j.jbiosc.2014.12.002spa
dc.rightsRevista EIA - 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1417spa
dc.subjectEstudio de sensibilidadspa
dc.subjectL-Fenilalaninaspa
dc.subjectFermentaciónspa
dc.subjectRentabilidadspa
dc.subjectSimulaciónspa
dc.subjectSuperPro Designerspa
dc.subjectSensitivity studyeng
dc.subjectL-Phenylalanineeng
dc.subjectFermentationeng
dc.subjectProfitabilityeng
dc.subjectSimulation; SuperPro Designer®eng
dc.titleSimulación del proceso de producción de L-fenilalanina por la ruta fermentativa utilizando el simulador SuperPro Designer®spa
dc.title.translatedSimulation of the L-phenylalanine production process by the fermentative route using SuperPro Designer® simulatoreng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos