Publicación:
Uso del Modelo de Holt-Winters como estrategia para la predicción de condiciones ambientales durante el proceso de almacenamiento del Cacao

dc.contributor.authorVesga Ferreira, Juan Carlosspa
dc.contributor.authorContreras Higuera, Martha Fabiolaspa
dc.contributor.authorVesga Barrera, José Antoniospa
dc.date.accessioned2022-06-01 00:00:00
dc.date.accessioned2022-06-17T20:21:41Z
dc.date.available2022-06-01 00:00:00
dc.date.available2022-06-17T20:21:41Z
dc.date.issued2022-06-01
dc.description.abstractEl proyecto surge como respuesta al reto empresarial expuesto por la empresa Chocolate Girones ante el Comité Universidad - Empresa - Estado (CUUES) y la Oficina de Transferencia de Resultados de Investigación (OTRI), el cual expresa la necesidad de contar con un sistema de base tecnológica con capacidad de monitorear y gestionar el proceso de trazabilidad del cacao durante el almacenamiento y fabricación del chocolate. En vista de lo anterior, el objetivo del presente artículo consiste en proponer el uso del modelo del Holt-Winters como estrategia para predecir el comportamiento de la temperatura, la humedad relativa y la temperatura de punto de rocío que podrían estar presentes en el proceso de almacenamiento del grano de cacao, incorporando el uso de técnicas de análisis soportadas en Series de tiempo, facilitando con ello un mejor control y monitoreo de la calidad del grano durante su estancia en bodega. Acorde a los resultados obtenidos, el modelo propuesto permitió predecir el comportamiento de variables tales como temperatura, humedad relativa y temperatura de rocío, las cuales juegan un papel fundamental en la calidad del grano, como estrategia para el control de hongos y moho que podrían llegar a surgir en el grano durante su almacenamiento, debido a que el cacao es un producto higroscópico. Adicionalmente, el modelo propuesto puede ser considerado como una herramienta de predicción muy importante durante el proceso de trazabilidad del cacao, alcanzando niveles de ajuste superiores a 0,8, acompañados de un muy bajo error estándar de estimación y con un nivel de confianza del 95%.spa
dc.description.abstractThe project arises as a response to the business challenge presented by the company Chocolate Girones before the University - Company - State Committee (CUUES) and the Office for the Transfer of Research Results (OTRI), which expresses the need to have a basic system technology with the capacity to monitor and manage the cocoa traceability process during the storage and manufacture of chocolate. In view of the above, the objective of this article is to propose the use of the Holt-Winters model as a strategy to predict the behavior of temperature, relative humidity and dew point temperature that could be present in the process of storage of the cocoa bean, incorporating the use of analysis techniques supported in time series, thereby facilitating better control and monitoring of the quality of the bean during its stay in the winery. According to the results obtained, the proposed model allowed to predict the behavior of variables such as temperature, relative humidity and dew temperature, which play a fundamental role in the quality of the grain, as a strategy for the control of fungi and mold that could reach to emerge in the bean during storage, because cocoa is a hygroscopic product. Additionally, the proposed model can be considered as a very important prediction tool during the cocoa traceability process, reaching adjustment levels higher than 0.8, accompanied by a very low standard error of estimation and with a confidence level of 95 %.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v19i38.1593
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5189
dc.identifier.urlhttps://doi.org/10.24050/reia.v19i38.1593
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1593/1469
dc.relation.citationeditionNúm. 38 , Año 2022 : .spa
dc.relation.citationendpage17
dc.relation.citationissue38spa
dc.relation.citationstartpage3820 pp. 1
dc.relation.citationvolume19spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAfoakwa, E. (2014). Cocoa Production and Processing Technology, Cleveland, CRC Press, pp. 140-200.spa
dc.relation.referencesAndrade, J.; Rivera, J.; Chire, G.; Ureña, M. (2019). Propiedades físicas y químicas de cultivares de cacao (Theobroma cacao L.) de Ecuador y Perú. Enfoque UTE, 10(4), pp. 1–12, https://doi:10.29019/ENFOQUE.V10N4.462.spa
dc.relation.referencesBeg, M.; Ahmad, S.; Jan, K.; Bashir, K. (2017). Status, supply chain and processing of cocoa - A review. Trends in Food Science & Technology, 66(1), pp. 108–116, https://doi: 10.1016/J.TIFS.2017.06.007.spa
dc.relation.referencesCernaianu, A.; Cernaianu, C.; Popescu, D.; Tutunea, D. (2018). Studies on the cooling systems for the production of electricity through Seebeck effect with TEG elements, International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, pp. 1-6, https://doi: 10.1109/ICATE.2018.8551444.spa
dc.relation.referencesFedecacao (2020). Cadena Productiva del Cacao: Diagnóstico de libre competencia. Superintendencia de Industria y Comercio. Disponible en: https://www.sic.gov.co/recursos_user/documentos/promocion_competencia/Estudios_Economicos/Cacao.pdfspa
dc.relation.referencesFigueroa, C.; Mota, J.; Ferrocino. I. (2019). The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. International Journal of Food Microbiology, 301(1), pp. 41–50, https://doi: 10.1016/J.IJFOODMICRO.2019.05.002.spa
dc.relation.referencesGermán, A.; Tauro, C.; Andreo, V.; Bernasconi, I. Ferral, A. (2016). Análisis de una serie temporal de clorofila-a a partir de imágenes MODIS de un embalse eutrófico, IEEE Biennial Congress of Argentina (ARGENCON), Buenos Aires, Argentina, pp. 697–704. https://doi: 10.1109/ARGENCON.2016.7585365.spa
dc.relation.referencesHudson, D.; Cohen, M. (2016). Neural networks and artificial intelligence for biomedical engineering, New Jersey, Wiley-IEEE Press, pp. 105-120.spa
dc.relation.referencesLambert, M.; Blaes, X.; Traore, P.; Defourny, P. (2017). Estimate yield at parcel level from S2 time serie in sub-Saharan smallholder farming systems, 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images, Brugge, Belgium, pp. 1-7, https://doi:10.1109/Multi-Temp.2017.8035204.spa
dc.relation.referencesMejdal, M.; Abouhilal, A.; Chahid, E. (2017). Effects of temperature in the performance of the thermoelectric devises: Power generation, International Renewable and Sustainable Energy Conference-IRSEC, Marrakech, Morocco, pp. 338–343, https://doi: 10.1109/IRSEC.2016.7984011.spa
dc.relation.referencesMuñoz, M.; Cortina, J.; Vaillant, F.; Parra, S. (2019). An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation, Critical Reviews in Food Science and Nutrition, 60(10), pp. 1593–1613. https://doi.org/10.1080/10408398.2019.1581726.spa
dc.relation.referencesNair, K. (2021). Cocoa (Theobroma cacao L.). Tree Crops, London, Springer International Publishing, pp. 153–213.spa
dc.relation.referencesVesga, J. C.; Contreras, M.; Vesga, J. A. (2021). Nuevos desafíos en el desarrollo de soluciones para e-health en Colombia, soportados en Internet de las Cosas (IoT). Revista EIA, 18(36), 36008 pp. 1–19. https://doi.org/10.24050/reia.v18i36.1508spa
dc.relation.referencesWei, W. (2013). Time Series Analysis, London, Oxford University Press, pp. 148–195spa
dc.relation.referencesWu, J.; He, Y. (2021). Prediction of GDP in Time Series Data Based on Neural Network Model, IEEE International Conference on Artificial Intelligence and Industrial Design (AIID), Guangzhou, China, pp. 20–23, https://doi: 10.1109/AIID51893.2021.9456509.spa
dc.relation.referencesYang, D.; Chen, H.; Song, Y.; Gong, Z. (2017). Granger Causality for Multivariate Time Series Classification, IEEE International Conference on Big Knowledge, Hefei, China, pp. 103–110, https://doi: 10.1109/ICBK.2017.36.spa
dc.relation.referencesŻyżelewicz, D.; Budryn, G.; Oracz, J.; Antolak, H.; Kręgiel, D.; Kaczmarska, M. (2018). The effect on bioactive components and characteristics of chocolate by functionalization with raw cocoa beans. Food Research International, 113(1), pp. 234–244, https://doi: 10.1016/J.FOODRES.2018.07.017.spa
dc.rightsRevista EIA - 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1593spa
dc.subjectAlmacenamientospa
dc.subjectCacaospa
dc.subjectHumedadspa
dc.subjectPunto de rocíospa
dc.subjectSeries de tiempospa
dc.subjectTemperaturaspa
dc.subjectStorageeng
dc.subjectCocoaeng
dc.subjectHumidityeng
dc.subjectDew pointeng
dc.subjectTime serieseng
dc.subjectTemperatureeng
dc.titleUso del Modelo de Holt-Winters como estrategia para la predicción de condiciones ambientales durante el proceso de almacenamiento del Cacaospa
dc.title.translatedUse of the Holt-Winters Model as a strategy for predicting environmental conditions during the cocoa storage processeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos