Publicación:
Comparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventos

dc.contributor.authorFERNANDEZ FRAGA, SANTIAGOspa
dc.contributor.authorRANGEL MONDRAGON, JAIMEspa
dc.date.accessioned2017-09-12 00:00:00
dc.date.accessioned2022-06-17T20:18:56Z
dc.date.available2017-09-12 00:00:00
dc.date.available2022-06-17T20:18:56Z
dc.date.issued2017-09-12
dc.description.abstractLa obtención de información por medio de la medición de señales registradas durante diferentes procesos o condiciones fisiológicas del cerebro es importante para poder desarrollar interfaces computacionales que traduzcan las señales eléctricas cerebrales a comandos computacionales de control. Un electroencefalograma (EEG) registra la actividad eléctrica del cerebro en respuesta al recibir diferentes estímulos externos (potenciales por eventos). El análisis de estas señales permite identificar y distinguir estados específicos de la función fisiológica del cerebro. La Dimensión Fractal se ha utilizado como una herramienta para el análisis de formas de ondas biomédicas, en particular se ha utilizado para determinar la medida de la complejidad en series de tiempo generadas por EEG. El presente documento pretende analizar series de tiempo biomédicas obtenidas por EEG a las cuales se obtendrán la FD por medio de los métodos Higuchi, Katz y Multi-resolución de Conteo de Cajas, que muestre la relación entre el método para la obtención de la Dimensión Fractal y la condición fisiológica de la señal basada en Potenciales Cerebrales Relacionados por Eventosspa
dc.description.abstractLa obtención de información por medio de la medición de señales registradas durante diferentes procesos o condiciones fisiológicas del cerebro es importante para poder desarrollar interfaces computacionales que traduzcan las señales eléctricas cerebrales a comandos computacionales de control. Un electroencefalograma (EEG) registra la actividad eléctrica del cerebro en respuesta al recibir diferentes estímulos externos (potenciales por eventos). El análisis de estas señales permite identificar y distinguir estados específicos de la función fisiológica del cerebro. La Dimensión Fractal se ha utilizado como una herramienta para el análisis de formas de ondas biomédicas, en particular se ha utilizado para determinar la medida de la complejidad en series de tiempo generadas por EEG. El presente documento pretende analizar series de tiempo biomédicas obtenidas por EEG a las cuales se obtendrán la FD por medio de los métodos Higuchi, Katz y Multi-resolución de Conteo de Cajas, que muestre la relación entre el método para la obtención de la Dimensión Fractal y la condición fisiológica de la señal basada en Potenciales Cerebrales Relacionados por Eventoseng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v14i27.864
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/4952
dc.identifier.urlhttps://doi.org/10.24050/reia.v14i27.864
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/864/1093
dc.relation.citationeditionNúm. 27 , Año 2017spa
dc.relation.citationendpage83
dc.relation.citationissue27spa
dc.relation.citationstartpage73
dc.relation.citationvolume14spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesM. Bachmann, J. Lass, A. Suhhova and H. Hinrikus, (2013). Spectral asymmetry and Higuchi´s Fractal Dimension Measures of Depression Electrencephalogram, Computational and Mathematical Methods in Medicine, Hindawi Publishing Corporation, vol. 2013, 8 pages.spa
dc.relation.referencesP. N. Baljekar and H. A. Patil, (2012). A comparison of waveform fractal dimension techniques for voice pathology classification, IEEE ICASPP ISSN 978-1-4673-0046-9, pp. 4461-4464spa
dc.relation.referencesT. Bojić, A. Vuckovic, A. Kalauzi, (2010). Modeling EEG fractal dimension changes in wake and drowsy states in humans—a preliminary study, Journal of Theoretical Biology, 262, pp. 214-222.spa
dc.relation.referencesA. Bashashati, R.K. Ward, G.E. Birch, M.R. Hashemi, MA. Khalilzadeh, (2003). Fractal Dimension-Based EEG Biofeedback System, Proceedings of the 25th Annual International Conference of the IEEE EMBS, pp. 2220-2223, 2003.spa
dc.relation.referencesF. Cervantes-De la Torre, J.I. González-Trejo, C.A. Real-Ramirez and L.F. Hoyos-Reyes,(2013). Fractal dimension algorithms and their application to time series associated with natural phenomena, 4th National Meeting in Chaos, Comlex Sustem and Time Series, Journal o Physics: Conference Series, 475, 10 pages.spa
dc.relation.referencesA. Delorme and S. Makeig, (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods, 134:9-21. Dubravka R. Jevtić, and Milorad P. Paskaš, (2011). Application of Katz Algorithm for Fractal Dimension in Analysis of Room Impulse Response, 19th Telecommunications forum TELFOR 2011, pp. 1063-1066.spa
dc.relation.referencesD. Easwaramoorthy and R. Uthayakumar, (2010). Analysis of EEG Signals using Advanced Generalized Fractal Dimensions, Second International conference on Computing, Communication and Networking Technologies, 978-1-4244-6589-7, 6 pages.spa
dc.relation.referencesR. Esteller, G. Vachtsevanos, J. Echauz, and B. Litt, (2001). A Comparison of Waveform Fractal Dimension Algorithms, IEEE Transactions on Circuits and Systems-I: fundamental theory and applications, vol. 48, no. 2, pp. 177-183, 2001.spa
dc.relation.referencesG. Gálvez Coyt, A. Muñoz Diosdado, J. A. Balderas López, J. L. del Rio Correa, and F. Angulo Brown, (2013). Higuchi’s Method applied to the detection of periodic components in time series and its application to seismograms, COMPLEX SYSTEMS Revista Méxicana de Física, S 59 (1), pp. 1-6.spa
dc.relation.referencesS. Georgiev, Z. Minchev, C. Christova, D. Philipova, (2009). EEG Fractal Dimension Measurement before and after Human Auditory Stimulation, Bioautomaton, pp. 70-81. B. P. Harne, (2014). Higuchi Fractal Dimension Analysis of EEG Signal before and after OM Chanting to Observe Overall Effect on Brain, International Journal of Electrical and Computer Engineering (IJECE), vol. 4 pp. 585-592. HeadIT, Swartz Center for Computational Neuroscience (SCCN) of the University of California, San Diego. Its development has been funded by U.S. National Institutes of Health grants R01-MH084819 (Makeig, Grethe PIs) and R01-NS047293 (Makeig PI).spa
dc.relation.referencesM. Katz, (1988). Fractals and the analysis of waveforms, Computers in Biology and Medicine, vol. 18, pp. 145-156. T. Q. D. Khoa, V. Q. Ha and V. V. Toi, (2012). Higuchi Fractal Properties of Onset Epilepsy Electroencephalogram, Computational and Mathematical Methods in Medicine, Hindawi Publishing Corporation, vol. 2012, 6 pages.spa
dc.relation.referencesC. K. Loo, A. Samraj and G. C. Lee, (2011). Evaluation of Methods for Estimating Fractal Dimension in Motor Imagery-Based Brain Computer Interface, Hindawi Publishing Corporation, Discrete Dynamics in Nature and Society Vol. 2011, Article ID 724697, 8 pages.spa
dc.relation.referencesW. Lutzenberger, H. Preissl, F. Pulvermüller, (1995). Fractal dimension of electroencephalographic time series and underlying brain processes, Biological Cybernetics Springer-Verlag, vol. 73, pp. 477-482.spa
dc.relation.referencesS. Makeig, A. Delorme, M. Westerfield, T-P. Jung, J. Townsend, E. Courchesne and T. J. Sejnowski, (2004). Electroencephalographic brain dynamics following visual targets requiring manual responses, Public Library of Science Biology, 29 pages.spa
dc.relation.referencesS. Makeig, M. Westerfield, T-P Jung, J. Covington, J. Townsend,T. J. Sejnowski, and E. Courchesne, (1999). Functionally Independent Components of the Late Positive Event-Related Potential during Visual Spatial Attention, The Journal of Neuroscience, 19 (7), pp. 2665-2680.spa
dc.relation.referencesA. S. Martins, L. A. Neves, M. Z. Nascimento, M. F. Godoy, E. L. Flores and G. A. Carrijo, (2012). Multiscale Fractal Descriptors and Polynomial Classifier for Partial Pixels Identification in Regions of Interest of Mammographic Images, IEEE Latin America Transactions, Vol. 10, No. 4, pp. 1999-2005.spa
dc.relation.referencesG. Millán, E. S. Juan and M. Jamett, (2014). Simple Estimator of the Hurst Exponent for Self-Similar Traffic Flows, IEEE Latin America Transactions, Vol. 12, No. 8, pp. 1341-1346.spa
dc.relation.referencesMüller K.R., and Mattia D. (2010). Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges. Frontiers in Neuroscience, Vol 4, pp.161.spa
dc.relation.referencesH. H. Mueller, (2010) “QEEG Brain Mapping, Evaluating the rhythms of the Brain”, Edmonton Neurotherapy, 2010, On line http://www.edmontonneurotherapy.com/Edmonton_Neurotherapy_QEEG_brain_mapping.html.spa
dc.relation.referencesP. Paramanathan, R. Uthayakumar, (2008), Application of fractal theory in analysis of human electroencephalographic signals, Computers in Biology and Medicine, no. 38, pp. 372-378spa
dc.relation.referencesP. Paramanathan and R. Uthayakumar, (2007). Detecting Patterns in Irregular Time Series with Fractal Dimension, International Conference on Computational Intelligence and Multimedia Applications, pp. 323-327.spa
dc.relation.referencesF. R. Perlingeiro, L. L. Ling, (2005). Uma Nova Abordagem para Estimação da Banda Efetiva em Processos Fractais. IEEE Latin America Transactions, Vol. 3, No. 5, pp. 436-446.spa
dc.relation.referencesG. E. Polychronaki, P. Y. Ktonas, S. Gatzonis, A Siatouni, P. A. Asvestas, H. Tsekou, D. Sakas and K. S. Nikita, (2010). Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection, Journal of Neural Engineering, 046007, 18 pages.spa
dc.relation.referencesB. S. Raghavendra, and D. N. Dutt, (2010). Computing Fractal Dimension of Signals using Multiresolution Box-counting Method, International Journal of Information and Mathematical Sciences, 6:1, pp. 50-65.spa
dc.relation.referencesB. S. Raghavendra and D. N. Dutt, (2009). A note on fractal dimensions of biomedical waveforms, Computers in Biology and Medicine, 39, pp. 1006-1012.spa
dc.relation.referencesS. Spasić, Lj. Nikolić, D. Mutavdžić, J. Šaponjić, (2011). Independent complexity patterns in single neuron activity induced by static magnetic field, Computer Methods and Programs in Biomedicine, vol. 104, pp. 212-218.spa
dc.relation.referencesSabogal S., Arenas G. (2011). Una Introducción a la geometría Fractal, Escuela de Matemáticas, Universidad Industrial de Santander. Bucaramanga, Cap I, pp. 2-15.spa
dc.rightsRevista EIA - 2017spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/864spa
dc.subjectDimensión Fractalspa
dc.subjectHiguchispa
dc.subjectKatzspa
dc.subjectMultiresolución de Conteo de Cajasspa
dc.subjectseñales EEG.spa
dc.subjectInteligencia Artificialspa
dc.subjectReconocimiento de Patronesspa
dc.subjectBioinformaticaspa
dc.titleComparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventosspa
dc.title.translatedComparativo de los Algoritmos de Dimensión Fractal Higuchi, Katz y Multiresolución de Conteo de Cajas en Señales EEG Basadas en Potenciales Relacionados por Eventoseng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos