Publicación:
Efecto del sistema de vulcanización en la red entrecruzada y en la reacción química de vulcanización del caucho natural

dc.contributor.authorUrrego Yepes, Williamspa
dc.contributor.authorVelásquez Restrepo, Sandra Milenaspa
dc.contributor.authorGiraldo Vásquez, Diego Hernánspa
dc.contributor.authorPosada Correa, Juan Carlosspa
dc.date.accessioned2017-11-02 00:00:00
dc.date.accessioned2022-06-17T20:19:35Z
dc.date.available2017-11-02 00:00:00
dc.date.available2022-06-17T20:19:35Z
dc.date.issued2017-11-02
dc.description.abstractSe presenta una revisión sobre el efecto del sistema de vulcanización en la estructura formada durante la reacción de vulcanización, en la cinética de la reacción y en las propiedades de formulaciones que emplean caucho natural. Se encontró que aún existen aspectos por investigar dada la variedad de acelerantes, proporciones acelerante/azufre, tipos de caucho natural y formulaciones que emplean caucho natural. La mayor parte de la literatura evalúa la reacción de vulcanización mediante reometría de vulcanización y calorimetría diferencial de barrido (DSC), pero estas técnicas no permiten identificar el tipo de enlaces sulfídicos formados ni la densidad de enlaces entrecruzados. La temática es de gran interés científico e industrial pues el caucho natural es el caucho más comercializado a nivel mundial, y su vulcanización se realiza en la gran mayoría de las formulaciones empleando azufre como agente entrecruzante.spa
dc.description.abstractSe presenta una revisión sobre el efecto del sistema de vulcanización en la estructura formada durante la reacción de vulcanización, en la cinética de la reacción y en las propiedades de formulaciones que emplean caucho natural. Se encontró que aún existen aspectos por investigar dada la variedad de acelerantes, proporciones acelerante/azufre, tipos de caucho natural y formulaciones que emplean caucho natural. La mayor parte de la literatura evalúa la reacción de vulcanización mediante reometría de vulcanización y calorimetría diferencial de barrido (DSC), pero estas técnicas no permiten identificar el tipo de enlaces sulfídicos formados ni la densidad de enlaces entrecruzados. La temática es de gran interés científico e industrial pues el caucho natural es el caucho más comercializado a nivel mundial, y su vulcanización se realiza en la gran mayoría de las formulaciones empleando azufre como agente entrecruzante.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v14i28.1144
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5013
dc.identifier.urlhttps://doi.org/10.24050/reia.v14i28.1144
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1144/1166
dc.relation.citationeditionNúm. 28 , Año 2017spa
dc.relation.citationendpage115
dc.relation.citationissue28spa
dc.relation.citationstartpage99
dc.relation.citationvolume14spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAkay M., 2012. Introduction To Polymer Sciense And Technology. 1 St Ed. Mustafa Akay Ventus Publ. ApS.spa
dc.relation.referencesAkiba, M., Hashim, A.S., 1997. Vulcanization and crosslinking in elastomers. Prog. Polym. Sci. 22, 475–521.spa
dc.relation.referencesAkinlabi, A.K., Okieimen, F.E., Egharevba, F., Malomo, D., 2006. Investigation of the effect of mixing schemes on rheological and physico-mechanical properties of modified natural rubber blends. Mater. Des. 27, 783–788. doi:10.1016/j.matdes.2005.01.007spa
dc.relation.referencesAllen, P.W., Bristow, G.M., 1963. The gel phase in Natural Rubber. J. Appl. Polym. Sci. 7, 603–615.spa
dc.relation.referencesASTM D3182, 2013. Standard Practice for Rubber — Materials , Equipment , and Procedures for Mixing Standard Compounds.spa
dc.relation.referencesASTM D5289, 2012. Test Method for Rubber Property--Vulcanization Using Rotorless Cure Meters. ASTM International.spa
dc.relation.referencesB.I Gengrinovich, 1954. Calorific and thermal properties of natural rubber in the oriented and non-oriented states. Rubber Chem. Technol. 95, 571–574.spa
dc.relation.referencesBlokh, G.A., Yaroshevich, A.G., 1957. The interaction between carbon black and sulfur during vulcanization. Proceeding Acadmey Sci. USSR Phys Chem Sect 116, 583–586.spa
dc.relation.referencesCerveny, S., Marzocca, A.J., 1999. Analysis of variation of molecular parameters of natural rubber during vulcanization in conformational tube model. II. Influence of sulfur/accelerator ratio. J. Appl. Polym. Sci. 74, 2747–2755. http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097–4628(19991209)74:11%3C2747::AID–APP22%3E3.0.CO;2–N/full.spa
dc.relation.referencesCoran, A., 2013. 7 Vulcanization. Sci. Technol. Rubber 337.spa
dc.relation.referencesDatta, R.., 2002. Rubber curing systems. iSmithers Rapra Publishing. http://books.google.com/books?hl=en&lr=&id=XoZa5t3_ogAC&oi=fnd&pg=PA3&dq=%22Evans,+Engelmann+%26+Buckham%22+%22Research+(Caswell)%22+%22%26+N+Technology+Ltd.+and+BIP+Chemicals%22+%22Coates+and+A.F.+Johnson,+IRC+in+Polymer%22+%22G.+Woods,%22+%22Kirby,+Du+Pont+(U.K.)%22+&ots=mu32fkpbF0&sig=Nr_6AjWksG7OtoVPaZOXFiogeYY.spa
dc.relation.referencesDavies, B., 1986. Natural rubber—Its engineering characteristics. Mater. Des. 7, 68–74. http://www.sciencedirect.com/science/article/pii/S0261306986800048.spa
dc.relation.referencesDe Snaijer, H., Yuen, J., 2016. Handbook of styrene butadiene rubber. Scitus Acad. LLC.spa
dc.relation.referencesDick, J.S., 2011. Basic rubber testing selecting methods for a rubber test program. ASTM International, West Conshohocken, Pa.spa
dc.relation.referencesFernández, M.., Gonzáles, N., Mugica, A., Bernicot, C., 2006. Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochem. Acta 1, 65–70.spa
dc.relation.referencesFerry, J., Gee, G., Treloar, L.R.., 1945. The interaction between rubber and liquids. VII. The heats and entropies of dilution of natural rubber by various liquids. Rubber Chem. Technol. 19, 1–13.spa
dc.relation.referencesFlory, P.J., 1942. Constitution of three dimensional polymers and the theory of gelation. J. Phys. Chem. 46, 132–140.spa
dc.relation.referencesFlory, P.J., Rehner, J., 1943a. Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity. J. Chem. Phys. 11, 512. doi:10.1063/1.1723791spa
dc.relation.referencesFlory, P.J., Rehner, J., 1943b. Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling. J. Chem. Phys. 11, 521. http://link.aip.org/link/JCPSA6/v11/i11/p521/s1&Agg=doi. doi:10.1063/1.1723792spa
dc.relation.referencesFranck, A., Hafner, K., Kern, W.F., 1962. The activation energy of vulcanization. Rubber Chem. Technol. 35, 76–91. Gee, G., 1943. The interaction between rubber and liquids III. The swellingof vulcanized rubber in various liquids. Rubber Chem. Technol. 16, 263–267.spa
dc.relation.referencesGee, G., 1942. The interaction between rubber and liquids II. Thermodynamical basis of the swelling and solution of rubber. Rubber Chem. Technol. 15, 545–552.spa
dc.relation.referencesGradwell, M.H.S., Merwe, M.J., 1999a. Reaction of 2-t-butilbenzothiazole sulfenamida with sulfur and zinc oxide in the absence of rubber. Rubber Chem. Technol. 72, 55–64.spa
dc.relation.referencesGradwell, M.H.S., Merwe, M.J., 1999b. 2-t-butilbenzotiazole sulfenamide accelerated sulfur vulcanization of polyisoprene. Rubber Chem. Technol. 72, 65–73.spa
dc.relation.referencesHauser, E.A., Sze, M.C., 1942. Chemical reactions during vulcanization III. J. Phys. Chem. 46, 118–131.spa
dc.relation.referencesHeideman, G., 2004. Reduced zinc oxide levels in sulphur vulcanisation of rubber compounds: mechanistic aspects of the role of activators and multifunctional additives. s.n.], S.l.spa
dc.relation.referencesHeideman, G., Datta, R.N., Noordermeer, J.W.M., Baarle, B.V., 2004. Activators in accelerated sulfur vulcanization. Rubber Chem. Technol. 77, 512–541.spa
dc.relation.referencesHeinrich, G., Straube, E., Helmis, G., 1988. Rubber elasticity of polymer networks: Theories. Adv. Polym. Sci. 85, 33–87.spa
dc.relation.referencesJarny, Y., 2000. SIMULTANEOUS ESTIMATION OF KINETIC PARAMETERS USING GENETIC ALGORITHMS, in: Inverse Problems in Engineering: Theory and Practice: Presented at the 3rd International Conference on Inverse Problems in Engineering, Theory and Practice, June 13-18, 1999, Port Ludlow, Washington. p. 263. http://www.me.ua.edu/3icipe/papers/paper61.pdf.spa
dc.relation.referencesKamal, M.R., Sourour, S., 1973. Kinetics and thermal characterization of thermoset cure. Polym. Eng. Sci. 13, 59–64.spa
dc.relation.referencesKrishnan, S., 2015. Natural rubber latex filler masterbatch: preparation, processing and evaluation. Sch. Press.spa
dc.relation.referencesKuptsov, A.H., Zhizhin, G.N., 1998. Handbook of fourier transform Raman and Infrared spectra of polymers, Elsevier. ed.spa
dc.relation.referencesLloyd, D.G., 1991. Additives in rubber processing. Mater. Des. 12, 139–146. http://www.sciencedirect.com/science/article/pii/026130699190122K.spa
dc.relation.referencesLoo, C.T., 1974. High temperature vulcanization of elastomers: 3. Network structure of efficiently vulcanized natural rubber mixes. Polymer 15, 729–737.spa
dc.relation.referencesMansilla, M.A., 2012. Influencia de la microestructura en las propiedades mecánicas y térmicas de mezclas de caucho natural y caucho estireno butadieno http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_5117_Mansilla.pdf.spa
dc.relation.referencesMansilla, M.A., Quasso, F., Marzocca, A.J., 2007. CARACTERIZACIÓN DE MEZCLAS VULCANIZADAS DE CAUCHO ESTIRENO BUTADIENO Y CAUCHO NATURAL http://www.materiales-org.ar/sitio/biblioteca/CONAMET-SAM2007/sam%20conamet%2007/pdf/T%C3%B3pico%2010%20-%20Materiales%20Polim%C3%A9ricos/10-14%20MansillaM%20(O).pdf.spa
dc.relation.referencesMark, J.E., Erman, B., Roland, M., 2013. The science and technology of rubber (4th ed.). Acad. Press.spa
dc.relation.referencesMartinez Valdés, M., 2012. Financiamiento, insumo para las empresas productoras de hule natural: procedimientos, riesgos y requisitos para una dispersión de recursos financieros eficiente. Editor. Académica Esp.spa
dc.relation.referencesMarzocca, A.J., 2007. Evaluation of the polymer–solvent interaction parameter χ for the system cured styrene butadiene rubber and toluene. Eur. Polym. J. 43, 2682–2689. http://linkinghub.elsevier.com/retrieve/pii/S0014305707001358. doi:10.1016/j.eurpolymj.2007.02.034spa
dc.relation.referencesMarzocca, A.J., 2003. Relación entre la cinetica de formación de entrecruzamientos y las propiedades mecánicas de elastomeros vulcanizados. Presented at the Jornadas SAM/CONAMET/Simposio materia, pp. 886–889.spa
dc.relation.referencesMarzocca, A.J., Cerveny, S., Raimondo, R.B., 1997. Analysis of the variation of molecular parameters of NR during vulcanization in the frame of the conformational tube model. J. Appl. Polym. Sci. 66, 1085–1092. http://dipc.ehu.es/cerveny/index_htm_files/journal%20of%20polym%20sci%2066%20(1997)%201085.pdf.spa
dc.relation.referencesMarzocca, A.J., Rodriguez Garraza, A.L., Sorichetti, P., Mosca, H.O., 2010. Cure kinetics and swelling behaviour in polybutadiene rubber. Polym. Test. 29, 477–482. http://linkinghub.elsevier.com/retrieve/pii/S0142941810000280. doi:10.1016/j.polymertesting.2010.02.008spa
dc.relation.referencesMarzocca, A.J., Steren, C.A., Raimondo, R.B., Cerveny, S., 2004. Influence of the cure level on the monomeric friction coefficient of natural rubber vulcanizates. Polym. Int. 53, 646–655. http://doi.wiley.com/10.1002/pi.1378. doi:10.1002/pi.1378spa
dc.relation.referencesMayer, R., 1977. Organic Chemistry of sulfur, S. OAE. ed. Plenum Press, New York.spa
dc.relation.referencesMorrison, N.J., 1984a. The reactions of crosslink precursors in natural rubber. Rubber Chem. Technol. 57, 86–96.spa
dc.relation.referencesMorrison, N.J., 1984b. The formation of crosslink precursors in the sulfur vulcanization of natural rubber. Rubber Chem. Technol. 57, 97–103.spa
dc.relation.referencesMorrison, N.J., Porter, M., 1984a. Temperature effects on the stability of intermediates and crosslinks in sulfur vulcanization. Rubber Chem. Technol. 57, 63–85.spa
dc.relation.referencesMorrison, N.J., Porter, M., 1984b. Crosslinking of rubbers. Synth. Charact. React. Appl. Polym. G Allen Ed Pergamon Press 57, 115.spa
dc.relation.referencesMukhopadhyay, R., Bhowmick, A.K., De, S.K., 1978. Effect of vulcanzation temperature and synergism of accelerators on the network and technical properties of efficiently vulcanized natural rubber mixes. Polymer 19, 1176–1180.spa
dc.relation.referencesMukhopadhyay, R., De, S.K., 1977. Effect of vulcanization temperature and vulcanization systems on the structure and properties of natural rubber vulcanizates. Polymer 18, 1243–1249.spa
dc.relation.referencesNallasamy, P., Mohan, S., 2004. Vibrational spectra of cis-1,4-Polyisoprene. Arab. J. Sci. Eng. 1A, 17–26.spa
dc.relation.referencesOhio, A., 1994. The Science ot Rubber Compounding. Sci. End Technol. Rubber 419. http://books.google.com/books?hl=en&lr=&id=3DRBl2L_lgUC&oi=fnd&pg=PA419&dq=%22rubber+usage+has+increased+substantially+in+modern+radial%22+%22tire+for+a+radial+construction+compared+with+approximately+9+kg+found%22+%22consumption+is+virtually+in+line+with+the+gross+national+product%22+&ots=kr_H4i8Hx2&sig=lxuYlhqJGtxiwcTo8SU_bs1XRpE.spa
dc.relation.referencesOhm, R.F., 1990. The Vanderbilt Rubber Handbook, R.T Vanderbilt Company, INC. ed. Norwalk.spa
dc.relation.referencesPeres, A.C., Lopes, L.M., Visconte, L.L., Nunes, R.C., 2006. Uso de DSC na determina\ccão de parâmetros de vulcaniza\ccão de látex de borracha natural. Polim. Cienc. E Tecnol. 16, 61. http://www.scielo.br/pdf/po/v16n1/v16n1a13.pdf.spa
dc.relation.referencesPinchuk, L., Jurkowski, B., Kravtsov, A., Goldade, V., 2001. On some variations in rubber charge state during procesing. Eur. Polym. J. 37, 2239–2243.spa
dc.relation.referencesPriyadarshan, P.M., 2017. Biology of hevea rubber. Springer.spa
dc.relation.referencesRabearison, N., Jochum, C., Grandidier, J.C., 2010. A cure kinetics, diffusion controlled and temperature dependent, identification of the Araldite LY556 epoxy. J. Mater. Sci. 46, 787-796. http://link.springer.com/10.1007/s10853-010-4815–7. doi:10.1007/s10853-010-4815-7spa
dc.relation.referencesRoland, C.M., 2004. Naval applications of elastomers. Rubber Chem. Technol. 77, 542–551.spa
dc.relation.referencesSaville, B., Watson, A.A., 1963. Structural characterization of sulfur vulcanizated rubber networks. Rubber Chem. Technol. 36, 547.spa
dc.relation.referencesShelton, J.R., McDonel, E.T., 1960. Investigation of radical and polar mechanisms in vulcanization reactions. Rubber Chem. Technol. 33, 342–356.spa
dc.relation.referencesUrrego, W., Giraldo, D., Álvarez-Láinez, M., 2012. Análisis cuantitativo por FTIR y evaluación comparativa de la descomposición térmica de tres variedades de caucho natural Colombiano. Presented at the SLAP 2012 XIII Simposio latinoamericano de polímeros, Colombia.spa
dc.relation.referencesVergnaud, J.M., Rosca, I.-D., 2009. Rubber curing and properties. CRC Press/Taylor & Francis, Boca Raton. http://www.crcnetbase.com/isbn/978-1-4200-8522-8.spa
dc.relation.referencesVillars, D.S., 1957. Studies on carbon black. III. Theory of bound rubber. Rubber Chem. Technol. 30, 157–169.spa
dc.relation.referencesWHITE, J.L., 1994. Rheological Behavior and Processing ot Unvulcanized Rubber. Sci. End Technol. Rubber 257. http://books.google.com/books?hl=en&lr=&id=3DRBl2L_lgUC&oi=fnd&pg=PA257&dq=%22and+others,+many+long+forgotten.+It+was+not,+however,+until%22+%22%5BM40,+M41,+M46%5D+of+the+U.S.+Rubber+Company+(the+last+two+in%22+%22compounded+with+large+quantities+of+small+particles+exhibited+a%22+&ots=kr_H4i8Hx4&sig=wbyWW8O3l7XI7pHD0sElCv3SpYs.spa
dc.relation.referencesWren, W.G., 1960. The chemistry of natural rubber production. Rubber Chem. Technol. 12, 378–412.spa
dc.relation.referencesZapata, N.C.R., Osswald, T.A., Ortiz, J.P.H., 2012. CINÉTICA DE CURADO DE UN CAUCHO EPDM Y UNA RESINA EPOXÍDICA ALIFÁTICA. MODELAMIENTO Y ANÁLISIS SIN Y CON DIFUSIÓN. Rev. Iberoam. Polímeros 14, 6.spa
dc.rightsRevista EIA - 2018spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1144spa
dc.subjectCaucho naturalspa
dc.subjectsistema de vulcanizaciónspa
dc.subjectreacción de vulcanizaciónspa
dc.subjectred entrecruzadaspa
dc.subjectagente vulcanizantespa
dc.subjectacelerantesspa
dc.subjectCiencia de los Materialesspa
dc.subjectPolímerosspa
dc.subjectElastómerosspa
dc.titleEfecto del sistema de vulcanización en la red entrecruzada y en la reacción química de vulcanización del caucho naturalspa
dc.title.translatedEfecto del sistema de vulcanización en la red entrecruzada y en la reacción química de vulcanización del caucho naturaleng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos