Publicación:
Un modelo de microsimulación basado en agentes para la propagación del COVID-19 en Medellín-Colombia

dc.contributor.authorGómez Marín, Cristian Giovannyspa
dc.contributor.authorMosquera Tobón, Jose Davidspa
dc.contributor.authorSerna-Urán, Conrado Augustospa
dc.date.accessioned2021-05-31 00:00:00
dc.date.accessioned2022-06-17T20:21:16Z
dc.date.available2021-05-31 00:00:00
dc.date.available2022-06-17T20:21:16Z
dc.date.issued2021-05-31
dc.description.abstractDesde el brote del nuevo coronavirus (COVID-19) el 31 de diciembre de 2019 en China se extendió rápidamente a más de 200 países de todo el mundo. Los gobiernos de los países afectados han tomado medidas como el distanciamiento social para disminuir la tasa de propagación de COVID-19. Como una forma de evaluar la efectividad de tales acciones, diseñamos un modelo de microsimulación basado en agentes que permite representar la propagación de COVID-19 en Medellín, Colombia. En consecuencia, reproducimos el número de casos y muertes causadas por COVID-19 de acuerdo con los datos reales de Medellín utilizando el modelo propuesto. Además, probamos nuestro modelo con dos escenarios: primero con acciones gubernamentales reales y segundo sin acciones gubernamentales en Medellín-Colombia. Los resultados de nuestro modelo muestran que las políticas de salud pública tempranas permiten aplanar la curva de la propagación de COVID-19 en contraste con el escenario sin restricciones. Como trabajo futuro, incluiremos más clústeres, por ejemplo, clústeres de ocio, clústeres de transporte, y la dinámica de los casos extranjeros de COVID-19spa
dc.description.abstractSince the outbreak of the novel coronavirus (COVID-19) at December 31ths of 2019 in China it quickly spread to more than 200 countries around the word. Government on affected countries have taken actions such as social distancing in order to decrease the COVID-19 spreading rate. As a way to evaluate how effective are such actions, we design an agent-based microsimulation model that allows for representing the COVID-19 spreading in Medellín, Colombia. Accordingly, we reproduce the number of cases and deaths caused by the COVID-19 according to Medellín-real data by using the proposed model. Also, we test our model with two scenarios: first one with real government actions and second one without any government actions in Medellín-Colombia. Our model results show that early-public-health policies allows for flatting the curve of the COVID-19 spreading in contrast to the scenario without restrictions. As future work, we will include more clusters—e.g., leisure clusters, transport clusters—and the dynamic of the foreign COVID-19 cases.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.24050/reia.v18i36.1501
dc.identifier.eissn2463-0950
dc.identifier.issn1794-1237
dc.identifier.urihttps://repository.eia.edu.co/handle/11190/5153
dc.identifier.urlhttps://doi.org/10.24050/reia.v18i36.1501
dc.language.isospaspa
dc.publisherFondo Editorial EIA - Universidad EIAspa
dc.relation.bitstreamhttps://revistas.eia.edu.co/index.php/reveia/article/download/1501/1411
dc.relation.citationeditionNúm. 36 , Año 2021 :spa
dc.relation.citationendpage16
dc.relation.citationissue36spa
dc.relation.citationstartpage36005 pp. 1
dc.relation.citationvolume18spa
dc.relation.ispartofjournalRevista EIAspa
dc.relation.referencesAcuña, L., Fuente, J. C., Soler, L. A., Valderrama, F., Daza, M. T., y Barbosa-Vaca, L. (2018). Situacion de la Enfermedad Renal Cróncia, la Hipertensión Arterial y la Diabetes Mellistus en Colombia 2017. Bogota, D.C: Fondo Colombiano de Enfermedades de Alto Costo.spa
dc.relation.referencesAdnan, M., Outay, F., Ahmed, S., Brattich, E., di Sabatino, S., y Janssens, D. (2020). Integrated agent-based microsimulation framework for examining impacts of mobility-oriented policies. Personal and Ubiquitous Computing, (1–13).spa
dc.relation.referencesAkira-Toda, A. (2020). Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impact. ArXiv Preprint ArXiv:2003.11221., 1–15. Retrieved from http://arxiv.org/abs/2003.11221spa
dc.relation.referencesAlvarez, F., Argente, D., y Lippi, F. (2020). A Simple Planning Problem for COVID-19 Lockdown. In (No. w26981). National Bureau of Economic Research. https://doi.org/10.2139/ssrn.3569911spa
dc.relation.referencesAnderson, R. ., Heesterbeek, H., Klinkenberg, D., y Hollingsworth, T. . (2020). How will country-based mitigation measures influence the course of the COVID-19 epidem. Lancet, 395(10228), 931–934.spa
dc.relation.referencesAraya, N., Leger, P., y Lopez, M. (2019). Whom do i Choose to Diffuse Information onTwitter? An Agent-Based Model Approach. IEEE Latin America Transactions, 17(4), 677–683. https://doi.org/10.1109/TLA.2019.8891933spa
dc.relation.referencesAsociación Colombiana de Infectologia. (2020). Clasificación clínica de casos y estratificación del riesgo de infección por SARS-Cov-2/COVID-19. Infectio. Revista de La Asociación Colombiana de Infectología, 24(3(S1)), 10–13.spa
dc.relation.referencesAssociation of Local Authority Medical Advisors. (2020). Covid-19 Medical Risk Assessment. Retrieved September 2, 2020, from Alama.org website: https://alama.org.uk/covid-19-medical-risk-assessment/spa
dc.relation.referencesBarabási, A.-L., y Réka, A. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509–512.spa
dc.relation.referencesBock, W., Adamik, B., Bawiec, M., Bezborodov, V., Bodych, M., Burgard, J. P., … Szymanski, P. (2020). Mitigation and herd immunity strategy for COVID-19 is likely to fail. MedRxiv, 2020.03.25.20043109. https://doi.org/10.1101/2020.03.25.20043109spa
dc.relation.referencesCalafiore, G. C., Novara, C., y Possieri, C. (2020). A Modified SIR Model for the COVID-19 Contagion in Italy. ArXiv Preprint ArXiv:2003.14391., 1–6. Retrieved from http://arxiv.org/abs/2003.14391spa
dc.relation.referencesCámara de Comercio de Medellín. (2019). Retos para la consolidación de las pymes en Antioquia. Medellín.spa
dc.relation.referencesCao, L.-L., Li, X., Kang, F., Liu, C., Sun, F., y Kotagiri, R. (2015). The quantitative and qualitative evaluation of a multi-agent microsimulation model for subway carriage design. International Journal of Microsimulation, 8(3), 6–40. Retrieved from https://www.researchgate.net/publication/311931329spa
dc.relation.referencesChao, D. L., Halloran, M. E., Obenchain, V. J., y Longini, I. M. (2010). FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Computational Biology, 6((1):e1000656). https://doi.org/https://doi.org/10.1371/journal.pcbi.1000656spa
dc.relation.referencesCohen, H. J., Lan, L., Archer, L., y Kornblith, A. B. (2012). Impact of age, comorbidity and symptoms on physical function in long-term breast cancer survivors (CALGB 70803). J Geriatr Oncol, 3(2), 82–89. https://doi.org/10.1016/j.jgo.2012.01.005spa
dc.relation.referencesDANE. (2018a). Censo Nacional de Población y Vivienda - CNPV 2018. Dane, 1–27. Retrieved from https://sitios.dane.gov.co/cnpv-presentacion/src/#cuanto00spa
dc.relation.referencesDANE. (2018b). Microdatos Censo Nacional de Población y Vivienda 2018. Retrieved April 25, 2020, from Censo Nacional de Población y Vivienda - CNPV-2018 website: http://microdatos.dane.gov.co/index.php/catalog/643/get_microdataspa
dc.relation.referencesDANE. (2020a). Boletín Técnico Principales indicadores del mercado laboral Febrero de 2020. Bogota.spa
dc.relation.referencesDANE. (2020b). Principales indicadores del mercado laboral Abril de 2020. Retrieved from https://www.dane.gov.co/files/investigaciones/boletines/ech/ech/bol_empleo_abr_20.pdfspa
dc.relation.referencesFerguson, N. M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., y Dighe, A. (2020). Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand.London: Imperial College COVID-19 Response Team, March, 16.spa
dc.relation.referencesFernando, C., Rojas, R., Alejandra, J., y Vanegas, N. (2019). Determinantes socioeconómicos y nutricionales del sobrepeso y la obesidad en la población adulta del departamento del Guaviare. Bogota D.C.spa
dc.relation.referencesHoertel, N., Blachier, M., Blanco, C., Olfson, M., Massetti, M., Rico, M. S., … Leleu, H. (2020). A stochastic agent-based model of the SARS-CoV-2 epidemic in France. Nature Medicine. https://doi.org/10.1038/s41591-020-1001-6spa
dc.relation.referencesInstituto Nacional de Salud [INS]. (2020). Covid-19 Colombia. Retrieved May 3, 2020, from Reporte COVID-19 03-05-2020 website: https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspxspa
dc.relation.referencesKuzmar, I., Giraldo-Ospina, C. E., Acevedo-Osorio, G. O., y Rua-Salas, G. (2018). Morbilidad de la Enfermedad Pulmonar Obstructiva Crónica en Colombia. Resultados del Estudio SANEPOC-2. Revista de La Facultad de Ciencias Médicas, 75(1), 19. https://doi.org/10.31053/1853.0605.v75.n1.16617spa
dc.relation.referencesLeleu, H., Hoertel, N., Massetti, M., y Blachier, M. (2020). Should We Quickly Get Out of Confinement to Face COVID-19 Pandemic? Estimating the Medical Outcomes of Different Public Health Strategies Using a Robust Microsimulation Agent-Based Model. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3569844spa
dc.relation.referencesLi, J., y O’Donoghue, C. (2013). A survey of dynamic microsimulation models: uses, model structure and methodology. International Journal of Microsimulation, 6, 3–55. https://doi.org/10.1093/jae/ejm029spa
dc.relation.referencesMellan, T. A., Hoeltgebaum, H. H., Mishra, S., Whittaker, C., Schnekenberg, R. P., Gandy, A., … Jeff Eaton, Sabine L van Elsland, Richard FitzJohn, Keith Fraser, Katy Gaythorpe, Will Green, Sarah Hayes, Natsuko Imai, Ben Jeffrey, Edward Knock, Daniel Laydon, John Lees, Tara Mangal, Andria Mousa, Gemma Nedjati-Gilani, Pierre Nouvellet, Daniela Oliver, S. F. and S. B. (2020). Report 21: Estimating COVID-19 cases and reproduction number in Brazil. Retrieved from https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news- wuhan-coronavirus Metropolitana, Á. (2018). Datos Abiertos Área Metropolitana del Valle de Aburra. Encuesta Origen Destino 2017 - Datos por Viajes. Retrieved from https://datosabiertos.metropol.gov.co/dataset/encuesta-origen-destino-2017-datos-por-viajesspa
dc.relation.referencesMinisterio de Educacion Nacional. Resolución 1730 de 2004. , (2004). Ministerio de Educacion Nacional. (2015). Consulta número de alumnos por aula (Vol. 2015-ER-14). Retrieved from https://www.mineducacion.gov.co/1759/articles-354336_archivo_pdf_Consulta.pdfspa
dc.relation.referencesMinisterio de Salud y Proteccion Social. (2016). Perfiles de Morbilidad Atendida en el Sistema de Seguridad Social en Salud Régimen Contributivo y Subsidiado. Año 2014. In El aseguramiento en cifras (Vol. 4006). Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VP/RBC/aseguramiento-cifras-2016-no.9-enero.pdfspa
dc.relation.referencesMinisterio de Salud y Proteccion Social. (2020). Capacidad instalada para atencion. Retrieved May 14, 2020, from https://minsalud.maps.arcgis.com/apps/opsdashboard/index.html#/1de89936b24449edb77e162d485ed5d9spa
dc.relation.referencesMontañola-Sales, C., Gilabert-Navarro, J. F., Casanovas-Garcia, J., Prats, C., López, D., Valls, J., y Vilaplana, C. (2015). Modeling tuberculosis in Barcelona. A solution to speed-up agent-based simulations. In 2015. Winter Simulation Conference (WSC) . IEEE., 1295–1306.spa
dc.relation.referencesMonteiro, J. F. G., Escudero, D. J., Weinreb, C., Flanigan, T., Galea, S., Friedman, S. R., y Marshall, B. D. L. (2016). Understanding the effects of different HIV transmission models in individual-based microsimulation of HIV epidemic dynamics in people who inject drugs. Epidemiology y Infection, 144(8), 1683-1700.spa
dc.relation.referencesNabi, K. N. (2020). Forecasting COVID-19 pandemic: A data-driven analysis. Chaos, Solitons and Fractals, 139, 110046. https://doi.org/10.1016/j.chaos.2020.110046spa
dc.relation.referencesO’Donoghue, C. (2014). Introduction. In C. O’Donoghue (Ed.), Handbook of Microsimulation Modelling (pp. 1–21). https://doi.org/10.1108/S0573-855520140000293001spa
dc.relation.referencesPalacios-Cruz, M., Santos, E., Velázquez-Cervantes, M. A., y León-Juárez, M. (2020). COVID-19, a worldwide public health emergency. Revista Clinica Espanola, (xx), 1–7. https://doi.org/10.1016/j.rce.2020.03.001spa
dc.relation.referencesPardo, M., y Farinas-Coronado, W. (2016). Agent-based Modeling and Simulation to Adoption Process of Information Technologies in Health Systems. IEEE Latin America Transactions, 14(7), 3358–3363. https://doi.org/10.1109/TLA.2016.7587642spa
dc.relation.referencesPrem, K., Liu, Y., Russell, T. W., Kucharski, A. J., Eggo, R. M., Davies, N., … Klepac, P. (2020). The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. The Lancet Public Health, 261–270. https://doi.org/10.1016/S2468-2667(20)30073-6spa
dc.relation.referencesPresidencia de la República. Decreto Número 457 del 22 de marzo de 2020. , (2020).spa
dc.relation.referencesRepública de Colombia. Decreto 2663 de 1950. Codigo Sustantivo del Trabajo. , (1950).spa
dc.relation.referencesRevista Dinero. (2016). Pymes contribuyen con más del 80% del empleo en Colombia. Dinero, 3. Retrieved from https://www.dinero.com/edicion-impresa/caratula/articulo/porcentaje-y-contribucion-de-las-pymes-en-colombia/231854spa
dc.relation.referencesRichiardi, M., y Richardson, R. (2017). JAS-mine: A new platform for microsimulation and agent-based modelling. International Journal of Microsimulation, 10(1), 106–134. Retrieved from http://www.microsimulation.org/IJM/V10_1/IJM_2017_10_1_4.pdfspa
dc.relation.referencesSmith, S. K., Tayman, J., y Swanson, D. A. (2013). Structural and microsimulation models. In A Practitioner’s Guide to State and Local Population Projections (pp. 215–249). https://doi.org/10.1007/978-94-007-7551-0_9spa
dc.relation.referencesTu, Y.-F., Chien, C.-S., Yarmishyn, A. A., Lin, Y.-Y., Luo, Y.-H., Lin, Y.-T., … Chiou, S.-H. (2020). A Review of SARS-CoV-2 and the Ongoing Clinical Trials. International Journal of Molecular Sciences, 21(7). https://doi.org/10.3390/ijms21072657spa
dc.relation.referencesVenkatramanan, S., Lewis, B., Chen, J., Higdon, D., Vullikanti, A., y Marathe, M. (2018). Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics, Vol. 22, pp. 43–49. https://doi.org/10.1016/j.epidem.2017.02.010spa
dc.relation.referencesWorld Health Organization. (2020a). Cumulative COVID-19 cases reported by countries and territories in the Americas. Retrieved May 6, 2020, from Cumulative COVID-19 cases reported by countries and territories in the Americas website: https://who.maps.arcgis.com/apps/webappviewer/index.html?id=2203b04c3a5f486685a15482a0d97a87yextent=-17277700.8881%2C-1043174.5225%2C-1770156.5897%2C6979655.9663%2C102100spa
dc.relation.referencesWorld Health Organization. (2020b). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19).spa
dc.relation.referencesWorldometer. (2020). Coronavirus Update (Live). Retrieved May 13, 2020, from https://www.worldometers.info/coronavirus/spa
dc.relation.referencesYepes, V. (2018). ¿Cuánto tiempo dedican los colombianos a las compras en tiendas físicas? Retrieved September 5, 2020, from https://www.colombia.com/vida-y-estilo/mujer/cuanto-tiempo-dedican-los-colombianos-a-las-compras-en-tiendas-fisicas-201492spa
dc.rightsRevista EIA - 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0spa
dc.sourcehttps://revistas.eia.edu.co/index.php/reveia/article/view/1501spa
dc.subjectAgent-based microsimulation modelingeng
dc.subjectStochastic simulationeng
dc.subjectDissemination modelingeng
dc.subjectCOVID-19eng
dc.subjectMicrosimulación basada en agentesspa
dc.subjectSimulación estocásticaspa
dc.subjectModelado de propagaciónspa
dc.subjectCOVID-19spa
dc.titleUn modelo de microsimulación basado en agentes para la propagación del COVID-19 en Medellín-Colombiaspa
dc.title.translatedUn An agent-based microsimulation model for COVID-19 dissemination in Medellín-Colombiaeng
dc.typeArtículo de revistaspa
dc.typeJournal articleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
Archivos