• Español
  • English
  • Iniciar sesión
    o
    ¿Nuevo Usuario? Registrarse¿Has olvidado tu contraseña?
Logotipo del repositorioREPOSITORIO INSTITUCIONAL
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Infección"

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Identificación temprana de deterioro cardiovascular mediante técnicas de Machine Learning
    (Universidad EIA, 2021) Carmona Pulgarín, Carlos Daniel; Macias Pimienta, Juan Camilo
    RESUMEN: Las enfermedades infecciosas representan un problema de gran importancia en el contexto hospitalario dado que son un peligro de gran magnitud dentro de una institución de salud, siendo los pacientes de cuidados intensivos una población muy vulnerable por su delicada condición. Así bien, el deterioro cardiovascular es uno de los agentes más determinantes a la hora del desarrollo de una enfermedad infecciosa, pues este es uno de los órganos y sistemas que primero se ven afectados a la hora de presentarse una infección, además de representar un aumento sustancial en la mortalidad de los pacientes cuando este se presenta. Actualmente gracias a los avances en el campo de instrumentación médica, la maquinaria implicada en el monitoreo y mantenimiento de los pacientes genera constantemente información sobre las variables que se ven implicadas en tales procesos, información que no se utiliza en ningún proceso de diagnóstico o seguimiento de posibles condiciones desarrolladas por el paciente. Con esto dicho, el objetivo de este proyecto es el de, a partir de técnicas de Machine Learning, un sub campo de la inteligencia artificial que se basa en la abstracción de información y la búsqueda de patrones dentro de un grupo de datos, encontrar un método de identificación temprana de deterioro cardiovascular en pacientes infectados a partir de datos recopilados de pacientes en la unidad de cuidados intensivos, obtenidos de una base de datos en la red (MIMIC) y de una institución de salud local (clínica de Las Américas). Para la ejecución de este proyecto en primer lugar se realizó todo el proceso de descarga de datos de las respectivas fuentes (MIMIC e institución local) y además se definió el deterioro cardiovascular en dos parámetros: presión arterial media por debajo de 70 mmHg y suministro de vasopresores. Con estos parámetros se procedió a realizar el acondicionamiento de los datos en PostgreSQL donde se obtuvieron las cohortes definitivas con y sin sospecha de infección con el fin de analizar el comportamiento del modelo de las dos maneras. Con la obtención de la cohorte de ambas bases de datos, se realizó todo el análisis de cohortes en la herramienta Power BI y la minería de datos en el programa informático Orange, donde se definieron las variables a ingresar con el criterio de aporte de información mínimo del 1% en los métodos de puntuación. Se seleccionaron los parámetros y los modelos de predicción para trabajar con los datos de MIMIC y definir cuál modelo alcanzaba mejores métricas. Estos resultados se analizaron a través de la herramienta Power BI y se seleccionó el modelo con las métricas más altas. Este modelo fue evaluado con los datos de la institución local. Por último, se realizó el diseño de la interfaz gráfica del modelo en el programa Figma y se realizó un video simulando la interacción que tendría el profesional con la interfaz del modelo predictivo. Los resultados mostraron que no hubo una diferencia significativa en el desempeño de los modelos para las muestras de pacientes con y sin sospecha de infección, es decir que el funcionamiento del modelo no cuenta con casi ninguna dependencia relacionada a esta variable. Los modelos relacionados con Gradient Boosting contaron con un desempeño más sobresaliente en el set de datos de la clínica de una institución de salud local, gracias a su capacidad para trabajar de forma óptima en muestras con datos faltantes, por lo que se recomienda trabajar con el modelo Gradient Boosting con las respectivas variables definidas.
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Modelo de predicción de sepsis a partir de datos históricos de pacientes en una unidad de cuidados intensivos
    (Universidad EIA, 2019) González Muñoz, Zuleimi Esteffanny; Merizalde Maya, Pablo; Bonet Cruz, Isis
    La creciente disponibilidad de datos y el rápido desarrollo de métodos de análisis de datos, han hecho posible las recientes aplicaciones exitosas de la Inteligencia Artificial en la salud. El uso de estos avances tecnológicos, permiten ayudar en los diferentes procesos de las instituciones de salud como en la predicción y diagnóstico de enfermedades. Dentro de estas, la sepsis es considerada como una afección con alta tasa de mortalidad especialmente en las unidades de cuidados intensivos. Esta afección, puede llegar a ser muy grave debido a las diferentes maneras de manifestarse, lo que dificulta su diagnóstico. La verificación de algunas variables generales inflamatorias, permiten indicar la letalidad de la infección. Actualmente, lo más común es el uso de indicadores como: SOFA, qSOFA y SAPS-II para predecir la posibilidad de sepsis, ya que ésta está muy ligada a la mortalidad. Aunque, en países desarrollados ya se están usando métodos basados en datos históricos con algoritmos de inteligencia artificial para poder hacer una predicción temprana. En el presente trabajo se analizaron los datos almacenados en la base de datos libre MIMIC-III, la cual contiene información de pacientes admitidos en la unidad de cuidados intensivos de The Beth Israel Deaconess Medical Center en Boston, Massachusetts. Se usaron una serie de variables clínicas de los pacientes, las cuales se pasaron por unas reglas duras que generan un valor numérico o probabilidad que se relaciona con la severidad del padecimiento. Las variables elegidas, corresponden a las que se utilizan en los indicadores mencionados para poder predecir la existencia o no de sepsis y la mortalidad de los pacientes. Por lo que el objetivo del trabajo es realizar un modelo de predicción de sepsis temprana, utilizando métodos de inteligencia artificial y compararlos con loa diferentes indicadores para el diagnóstico de esta afección. El procedimiento realizado, se basó en la metodología CRISP-DM, donde se inició con la obtención de los datos, se realizó un análisis de calidad de estos, se procedió a seleccionar las variables de los indicadores mencionados, se realizó una limpieza de estos datos y se obtuvo la vista única, la cual fue utilizada para entrenar clasificadores supervisados seleccionados: árbol de decisiones, KNN, naive bayes, red neuronal y máquinas de vector soporte. Para esta clasificación, se dividieron primero los datos en datos de aprendizaje y validación, se implementaron los modelos, y por último se corroboraron los resultados, eligiendo los mejores modelos y comparando los algoritmos entre sí, por medio de la evaluación de métricas utilizando validación cruzada. Los resultados indicaron que los modelos de machine learning y deep learning implementados, son capaces de igualar e incluso mejorar las predicciones de los modelos de reglas duras, rompiendo los paradigmas y sirviendo como un apoyo en la toma de decisiones de los profesionales de la salud.
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Sistema inteligente de predicción temprana de sepsis
    (Universidad EIA, 2021-02-09) Camacho, Javier; EIA; Dra. Isis Bonet Cruz
Universidad EIA Biblioteca CROAI

Sede Las Palmas:

Calle 23 AA Sur Nro. 5-200, Kilómetro 2+200 Variante al Aeropuerto José María Córdova, Envigado-Antioquia.
Código Postal: 055428 Tel: (604) 354 90 90
Tel-2: 3187754729 Fax: (574) 386 11 60

Cómo llegar
Sistema DSPACE 7 - Metabiblioteca | logo