Publicación: Modelo de predicción de sepsis a partir de datos históricos de pacientes en una unidad de cuidados intensivos
Portada
Citas bibliográficas
Código QR
Director
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor/Compilador
Editores
Tipo de Material
Fecha
Cita bibliográfica
Título de serie/ reporte/ volumen/ colección
Es Parte de
Resumen en español
La creciente disponibilidad de datos y el rápido desarrollo de métodos de análisis de datos, han hecho posible las recientes aplicaciones exitosas de la Inteligencia Artificial en la salud. El uso de estos avances tecnológicos, permiten ayudar en los diferentes procesos de las instituciones de salud como en la predicción y diagnóstico de enfermedades. Dentro de estas, la sepsis es considerada como una afección con alta tasa de mortalidad especialmente en las unidades de cuidados intensivos. Esta afección, puede llegar a ser muy grave debido a las diferentes maneras de manifestarse, lo que dificulta su diagnóstico. La verificación de algunas variables generales inflamatorias, permiten indicar la letalidad de la infección. Actualmente, lo más común es el uso de indicadores como: SOFA, qSOFA y SAPS-II para predecir la posibilidad de sepsis, ya que ésta está muy ligada a la mortalidad. Aunque, en países desarrollados ya se están usando métodos basados en datos históricos con algoritmos de inteligencia artificial para poder hacer una predicción temprana. En el presente trabajo se analizaron los datos almacenados en la base de datos libre MIMIC-III, la cual contiene información de pacientes admitidos en la unidad de cuidados intensivos de The Beth Israel Deaconess Medical Center en Boston, Massachusetts. Se usaron una serie de variables clínicas de los pacientes, las cuales se pasaron por unas reglas duras que generan un valor numérico o probabilidad que se relaciona con la severidad del padecimiento. Las variables elegidas, corresponden a las que se utilizan en los indicadores mencionados para poder predecir la existencia o no de sepsis y la mortalidad de los pacientes. Por lo que el objetivo del trabajo es realizar un modelo de predicción de sepsis temprana, utilizando métodos de inteligencia artificial y compararlos con loa diferentes indicadores para el diagnóstico de esta afección. El procedimiento realizado, se basó en la metodología CRISP-DM, donde se inició con la obtención de los datos, se realizó un análisis de calidad de estos, se procedió a seleccionar las variables de los indicadores mencionados, se realizó una limpieza de estos datos y se obtuvo la vista única, la cual fue utilizada para entrenar clasificadores supervisados seleccionados: árbol de decisiones, KNN, naive bayes, red neuronal y máquinas de vector soporte. Para esta clasificación, se dividieron primero los datos en datos de aprendizaje y validación, se implementaron los modelos, y por último se corroboraron los resultados, eligiendo los mejores modelos y comparando los algoritmos entre sí, por medio de la evaluación de métricas utilizando validación cruzada. Los resultados indicaron que los modelos de machine learning y deep learning implementados, son capaces de igualar e incluso mejorar las predicciones de los modelos de reglas duras, rompiendo los paradigmas y sirviendo como un apoyo en la toma de decisiones de los profesionales de la salud.